
MPI Mechanic
December 2003

www.clusterworld.com

Provided by ClusterWorld for
Jeff Squyres

cw.squyres.com

Copyright © 2004 ClusterWorld, All Rights Reserved

For individual private use only. Not to be reproduced or distributed without prior consent from ClusterWorld
(info@clusterworld.com)

26 CLUSTERWORLD volume 1 no 1

MPI Mechanic  

 Should you parallelize your application?

Before parallelizing your application, it is advisable to perform some
analysis to see if it will benefit from parallelization. Generally speaking,

the point of parallelizing an application is to make it run faster. Hence, it
only makes sense to parallelize an application if:

• The amount of work performed is large enough (i.e., the application
takes a long time to run in serial), or
• The amount of data to be processed is too large for one node (i.e.,
there is too much data to fit in RAM).

If neither of the above conditions are met, the overhead added by par-
allelization may actually cause the application to run slower. For example,
there is no point in parallelizing an application that only takes a few sec-
onds to run. However, an application that takes several hours to run in se-
rial and can easily have its work divided into multiple, semi-independent
parts is probably a good candidate for parallelization.

MPI implementation that is highly
tuned for their hardware. Several
ISVs (Independent Software Ven-
dors) also provide MPI implementa-
tions targeted for certain families
of platforms. Open source/freeware
MPI implementations are available
from researchers on a variety of dif-
ferent platforms; some are targeted
at production-quality usage while
others are solely intended as re-
search-quality projects.

MPI Implementations
As noted above, most parallel hard-
ware vendors have their own ver-
sion of MPI that is highly tuned for
their hardware. Specifi cally, ven-
dor-provided MPI implementations
provide the software necessary for
applications to utilize high band-
width, low latency message passing
in customized software and hard-
ware environments. Most clusters
built with such hardware should
use these vendor-provided MPI im-
plementations to extract the maxi-

* e term “MPI” is often bandied
about in high-performance com-
puting discussions — sometimes
with love, sometimes with disdain,
and sometimes as a buzzword that
no one really understands. * is
month’s column attempts to pro-
vide both overview information
about what MPI is for managers as
well as basic technical information
about MPI for developers.

What is MPI?
I am often asked to provide a quick
summary of exactly what MPI is. I
typically emphasize the following
points:

• MPI stands for the Message Pass-
ing Interface.

• MPI is a standard defi ned by a
large committee of experts from
industry and academia.

• * e design of MPI was heavily in-
fl uenced by decades of “best prac-
tices” in parallel computing.

• Although typically collectively re-
ferred to as the “MPI standard,”
there are actually two documents
(MPI- and MPI-)

• Implementations of the MPI
standard provide message pass-
ing (and related) services for par-
allel applications.

• * ere are many implementations
of the MPI standard.

Essentially: the MPI standard de-
fi nes a set of functions that can be
used by applications to pass mes-
sages from one MPI process to an-
other. MPI actually defi nes a lot

more services than just message
passing — but the heart and soul of
MPI is (as its name implies) passing
messages between MPI processes.

As noted, there are actually two
documents that comprise the MPI
standard: MPI- and MPI-. MPI-
is the “core” set of MPI services for
message passing. It provides ab-
stractions and mechanisms for ba-
sic message passing between MPI
processes (as well as some addition-
al features that are helpful for gen-
eral parallel computing). MPI- is
a set of extensions and functional-
ity beyond what is defi ned in MPI-
 such as dynamic process control,
one-sided message passing, parallel
I/O, etc.

Since MPI is simply a specifi ca-
tion, it is not tied to any particular
computing hardware or software
environment. As such, implemen-
tations of the MPI specifi cation are
available on a wide variety of plat-
forms. For example, most major par-
allel computing vendors provide an

Definitions and Fundamentals: The Message Passing Interface (MPI)

1203 MPI Column 26 10/27/03, 8:03:25 PM

27 volume 1 no 1 CLUSTERWORLD

mum amount of performance in
their applications.

Clusters built with commodity
components tend to have more of
a choice of which MPI implementa-
tion to use — many cluster admin-
istrators choose to install multiple
diff erent implementations and use
whichever one provides the best
performance on an application-by-
application basis.

Two notable open source MPI
implementations are LAM/MPI
(from Indiana University) and MPI-
CH (from Argonne National Labs).
Both have full MPI- support as
well as support for some portions
of MPI-. + ese implementations
are both freely available on the web
(see the “Resources” sidebar) and
can run in a wide variety of parallel
and cluster environments.

+ e examples provided in this
column will tend to use the LAM/
MPI implementation (refl ect-
ing my obvious bias as one of the
LAM/MPI developers) simply for
consistency of command syntax,
run-time semantics, and output.
Note, however, that since MPI is a
standard, example code provided
in this column should generally be

portable to other MPI implementa-
tions. Normally the only real dif-
ference the users should encounter
between MPI versions is how MPI
programs are started.

Who Uses MPI?
Two main groups of people use
MPI: parallel application develop-
ers and end users.

Parallel application developers
will actively use MPI function calls
in their code to eff ect parallelism
and message passing between MPI
processes. + ey compile, debug, and
run their applications in an MPI
implementation’s run-time envi-
ronment. Developers are therefore
knowledgeable in the API defi ned
by the MPI standard as well as the
semantics of their MPI implementa-
tion’s run-time environment, com-
mands, and MPI functionality.

Depending on the application,
end users may run an application
without even being aware that it
uses MPI (or that it is parallel). As
such, end users may use MPI, but
have varying levels of familiarity
with their particular MPI imple-
mentation’s commands and run-
time environments.

Basic MPI Definitions

Many aspects of MPI are described
in terms of interactions between
“MPI processes.” MPI processes are
usually independent processes but
may also be threads.

+ e MPI standard specifi cally
does not defi ne an execution mod-
el; it is therefore left up to the im-
plementation to defi ne how paral-
lel applications are run and exactly
what an MPI process is. A collection
of MPI processes that are launched
together are referred to as an MPI
application.

Messages are sent from (and re-
ceived into) typed buff ers in MPI
processes. You can loosely think of
using MPI as: “take this array of in-
tegers and send its contents to pro-
cess X.”

Using typed buff ers allows a
heterogeneous-capable MPI imple-
mentation to ensure that endian
ordering is preserved.

For example, when sending
the integer value of “” from a Sun
workstation, the MPI implemen-
tation will automatically convert
(if necessary) the data such that
the value of “” is received at the
target process — even if the tar-
get process is running on an Intel
workstation.

Note that the MPI applica-
tion programmer interface (API)
is specifi ed in three diff erent
languages: C, C++, and Fortran.
Hence, it is possible to write appli-
cations in any of these languages
that utilize the same underlying
MPI functionality.

Indeed, it is even permissible
to mix languages within the same
MPI application, if desired (al-
though certain data structures and
handles need to be “translated” be-
tween the diff erent languages). A
common example of this scenario is
a C-based MPI application that uses
a Fortran MPI numerical library.

MPI function notation

The MPI standard defines all functions in three languages: C, C++, and
Fortran. Every function defined by the MPI standard will necessarily have
a different binding in each language. For example, the bindings for the MPI
initialization function are listed in the “MPI Initialization Function Lan-
guage Bindings” table.

LANGUAGE BINDING

C int MPI_Init(int *argc, char ***argv);

C++ int MPI::Init(int& argc, char**& argv);

Fortran MPI_INIT(IERROR)
 INTEGER IERROR

To refer to the MPI function without referring to a specific language
binding, the MPI standard uses all capital letters: MPI_INIT.

MPI Mechanic

1203 MPI Column 27 10/27/03, 8:04:18 PM

28 CLUSTERWORLD volume 1 no 1

“Hello, World”
MPI Code Example
� e following is a simple “hello
world” program that shows the ba-
sics of the MPI C API.

#include <stdio.h>
#include <mpi.h>

int main(int argc, char
 **argv) {
int rank, size;

MPI_Init(&argv, &argv);
MPI_Comm_size(MPI_COMM_
 WORLD, &size);
MPI_Comm_rank(MPI_COMM_
 WORLD, &rank);
printf(“Hello, world.
 I am %d of %d.\n”, rank,
 size);
MPI_Finalize();
return 0;
}

� e fi rst use of MPI is on line :
#include <mpi.h>. � e header
fi le <mpi.h> is defi ned by the MPI
standard to be available in all im-
plementations.

It must provide all necessary
prototypes and external variable
declarations that may be required
for user MPI programs. Hence, it
should always be included in any
compilation unit that will utilize
MPI functionality.

Line  is the fi rst use of an MPI
function: MPI_INIT. As its name
implies, MPI_INIT ’s main purpose
is to initialize the MPI communica-
tions layer. MPI_INIT must be
invoked before any other MPI
function.

Lines  and  call MPI_COMM_
SIZE and MPI_COMM_RANK , re-
spectively. In this example, the fi rst
argument to both of these func-
tions is MPI_COMM_WORLD. MPI_
COMM_WORLD is a pre-defi ned MPI
communicator — an ordered set of

MPI processes and a unique com-
munications context. MPI_COMM_
WORLD is meaningful after MPI_
INIT returns; it implicitly contains
the set of MPI processes in the MPI
application.

MPI_COMM_SIZE and MPI_
COMM_RANK query MPI_COMM_
WORLD to obtain the total number
of MPI processes in the application
and a unique identifi cation for this
MPI process, respectively. � e re-
sults of these functions are stored
in the variables size and rank .

Hence, after executing line ,
the MPI process knows how many
peer processes it has as well as its
own unique identity in MPI_COMM_
WORLD (note that ranks are ex-
pressed in the range of [, size-]
for a given communicator).

Finally, MPI_FINALIZE per-
forms any necessary cleanup and
shuts down the MPI layer within
the MPI process. It is not legal to

MPI processes vs. ranks

Many MPI programmers tend to refer to MPI processes as “ranks.” This
is not technically correct.

• An MPI process is a unique entity.
• A rank value is is only unique in the context of a specific

communicator.

A single rank value may therefore refer to multiple different MPI pro-
cesses. For example, it is not correct to say “send to rank 0.” It is more cor-
rect to say “send to MPI_COMM_WORLD rank 0.”

Unfortunately, even [communicator, rank] pairs are not always unique.
It is easy to imagine cases where multiple communicators containing dis-
joint sets of processes are referred to by the same variable. Consider a
communicator referred to by a variable named row : “row rank 0” there-
fore does not necessarily refer to a unique MPI process. In this case, it is
typically safer to refer to the MPI process through its MPI_COMM_WORLD
rank.

But the situation becomes even more complicated when we introduce
the concept of MPI-2 dynamic processes — where it is possible to have
multiple, simultaneous instances of MPI_COMM_WORLD with disjoint sets
of processes. Dynamic MPI processes — and the issues surrounding them
— will be explored in a future edition of this column.

invoke any other MPI functions af-
ter MPI_FINALIZE returns.

Compiling the Program
Each MPI implementation provides
a diff erent mechanism for compil-
ing MPI programs. Some imple-
mentations provide “wrapper”
compilers that add command-line
fl ags such as -I, -L , and -l before
invoking an underlying compiler
(e.g., cc, gcc, icc, etc.). Since the
“wrapper” compilers simply manip-
ulate command line options, they
can be treated just like the underly-
ing compiler. Specifi cally, any com-
mand-line options that are given to
the wrapper compiler will simply be
passed on to the back-end compiler.

LAM/MPI provides mpicc,
mpiCC (or mpic++ on case-insensi-
tive fi lesystems), and mpif77 wrap-
per compilers for C, C++, and For-
tran, respectively. For example, to
compile the sample “hello world”

MPI Mechanic

1203 MPI Column 28 10/27/03, 8:05:03 PM

29 volume 1 no 1 CLUSTERWORLD

MPI program with LAM/MPI:

$ mpicc hello.c -o hello

Users are strongly encouraged to
use the wrapper compilers to com-
pile all MPI applications instead of
directly invoking the underlying
compiler (and attempting to pro-
vide the implementation’s -I, -L ,
-l, etc. fl ags). It is also advisable to
check that execution path and envi-
ronment variables are set correct-
ly for your MPI implementation.
(e same program can be compiled
with MPICH using the same com-
mand.

Running the MPI
Application with LAM/MPI

Before parallel MPI programs can
be run, the LAM/MPI run-time
environment must be started (or
“booted”) with the lamboot com-
mand.

For simplicity’s sake, this ex-
ample assumes running on a tra-
ditional rsh /ssh , Beowulf-style
cluster where the user can login to
all nodes without needing to inter-
actively provide a password or pass-
phrase. If you are required to enter
a password, then you will have dif-
fi culty with the following steps.

lamboot expects an argument
specifying the name of a boot sche-
ma fi le (or “hostfi le”) indicating on
which nodes to launch the run-time
environment. (e simplest boot
schema fi le is a text fi le with one
hostname (or IP address) per line.
Consider the following boot sche-
ma fi le (named “myhosts”):

node1.example.com
node2.example.com
node3.example.com
node4.example.com

Run the lamboot command with
myhosts as an argument:

$ lamboot myhosts

When lamboot completes success-
fully, the LAM run-time environ-
ment has been booted on all the
nodes listed in myhosts and is
available to run MPI programs. (e
mpirun command is used to launch
MPI applications.

(e C switch is used to tell
LAM to launch one MPI process
per “CPU” (as indicated in the boot
schema fi le; if no CPU count is indi-
cated — as in this example — one
CPU per node is assumed) in the
run-time environment. For ex-
ample, the following launches four
MPI “hello” processes:

$ mpirun C hello
Hello, world. I am 0 of 4.
Hello, world. I am 1 of 4.
Hello, world. I am 2 of 4.
Hello, world. I am 3 of 4.

Both mpirun and lamboot sup-
port many more command line
features, options, and modes of
operation; be sure to see their re-
spective manual pages for more
details.

Running the MPI
Application with MPICH

Running a program with MPICH is
not quite as involved as LAM/MPI.

Check that your execution path and
environment variables are set cor-
rectly for your version of MPICH.
To run the program under MPICH,
you will need a machine fi le which
looks strikingly familiar to the
LAM schema fi le:

node1.example.com
node2.example.com
node3.example.com
node4.example.com

Again, you must be able to login
to the nodes in your machine fi le
without entering a password. To
run the MPICH complied program,
simply create a machine fi le called
machines with the names of the
machines in your cluster then ex-
ecute the following.

mpirun -np 2 -machinefile
 machines hello

You should see a similar, but not
necessarily identical output order
as the LAM example. You may also
see something funny with the out-
put in any case. We will talk about
this and some other runtime issues
next month.

Jeff Squyres is a research associate at In-
diana University and is the lead developer
for the LAM implementation of MPI.
jsquyres@lam-mpi.org

MPI Resources
• MPI Forum: http://www.mpi-forum.org/
• LAM/MPI: http://www.lam-mpi.org/
• MPICH: http://www.mcs.anl.gov/mpi/mpich/
• MPI — The Complete Reference: Volume , The MPI Core (nd ed)

(The MIT Press) by Marc Snir, Steve Otto, Steven Huss-Lederman,
David Walker, and Jack Dongarra. ISBN ---.

• MPI — The Complete Reference: Volume , The MPI Extensions
(The MIT Press) by William Gropp, Steven Huss-Lederman, Andrew
Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir, and Marc Snir.
ISBN ---.

• NCSA MPI tutorial: http://webct.ncsa.uiuc.edu:/public/MPI

MPI Mechanic

1203 MPI Column 29 10/27/03, 8:05:49 PM

