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MPI Mechanic       

debugging a parallel application or 
the parallel run-time environment 
(RTE) itself (e.g., when setting up a 
new cluster). In these cases — par-
ticularly when using closed-source 
MPI implementations — it may be 
helpful to understand what MPI_
INIT is actually trying to do.

Every MPI implementation’s 
MPI_INIT works differently. 

In the first two columns, we covered 
the basics and fundamentals: what 
MPI is, some simple MPI example 
programs, and how to compile and 
run them. For this months column, 
we will look at the “ping-pong” ex-
ample program in Listing One. 

e ping-pong program starts 
up MPI (MPI_INIT) on line , gets 
the total number of peer MPI pro-
cesses and finds its own identity 
(MPI_COMM_SIZE and MPI_COMM_
RANK on lines  and ), does some 
basic message passing (MPI_SEND 
and MPI_RECV on lines -), and 
then finishes up (MPI_FINALIZE) 
on line . is simple example 
shows the use of six MPI functions. 
Surprisingly complex parallel ap-
plications can be written with just 
these six MPI functions.

Although there are hundreds 
of available MPI API functions, 
many MPI applications find that a 
relatively small subset is suitable 
for their needs. In that light, this 
month’s column examines the six 
MPI functions used in the ping-
pong example in detail. is analy-
sis includes not only what the MPI 
standard specifies for each func-
tion’s functionality, but also some 
of the more in-depth (and poten-
tially implementation-specific) is-
sues that frequently arise with MPI 
applications, especially when using 
one MPI application with multiple 
MPI implementations.

MPI_INIT: The Rest 
of the Story

Conceptually, MPI_INIT is very 
simple: start up the MPI communi-
cations layer — it is almost always 
the first MPI function invoked. 
ere are, however, several func-

tions that can be invoked before 
MPI_INIT — see the sidebar for 
more information. Most MPI imple-
mentations recommend that MPI_
INIT be invoked as close to the 
beginning of main() as possible. 
is rule is as much as most MPI 
developers need to know. But it can 
be useful to know more — particu-
larly when debugging. You may be 

What really happens during MPI_INIT

 LISTING ONE 
 One MPI PingPong Program

 1 #include <stdio.h>
 2 #include <mpi.h>
 3
 4 int main(int argc, char **argv) {
 5 int rank, size, mesg, tag = 123;
 6 MPI_Status status;
 7
 8 MPI_Init(&argv, &argv);
 9 MPI_Comm_size(MPI_COMM_WORLD, &size);
10 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
11 if (size < 2) {
12 printf(“Need at least 2 processes!\n”);
13 } else if (rank == 0) {
14 mesg = 11;
15 MPI_Send(&mesg,1,MPI_INT,1,tag,MPI_COMM_WORLD);
16 MPI_Recv(&mesg,1,MPI_INT,1,tag,MPI_COMM_
   WORLD,&status);
17 printf(“Rank 0 received “%d” from rank 1\
   n”,mesg);
18 } else if (rank == 1) {
19 MPI_Recv(&mesg,1,MPI_INT,0,tag,MPI_COMM_
   WORLD,&status);
20 printf(“Rank 1 received “%d” from rank 0/
   n”,mesg);
21   mesg = 42;
22   MPI_Send(&mesg,1,MPI_INT,0,tag,MPI_COMM_WORLD);
23  }
24  MPI_Finalize();
25  return 0;
26 }
27 /* To compile and run the program:
28  *    mpicc pingpong.c -o pingpong
29  *    mpirun -np 2 pingpong
30  */
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Generally, its job is to create, initial-
ize, and make available all aspects of 
the message passing layer. is may 
even include launching addition-
al processes (typically peer MPI_
COMM_WORLD processes). at is, 
some MPI implementations estab-
lish an MPI RTE before MPI_INIT 
(and MPI_INIT simply establishes 
a parallel application in that RTE) 
while others create the RTE during 
MPI_INIT. Although some paral-
lel environments are a natural fit 
to one model or the other, since the 
MPI standard does not specify an 
MPI application’s execution model, 
both are perfectly valid approaches.

MPI_INIT also typically al-
locates resources such as shared 
memory, local interprocess commu-
nication channels, network com-
munication channels (TCP sock-
ets, Myrinet ports, and/or other 
network-specific resources), and/or 
“special” memory used for commu-
nicating with specialized network-
ing hardware. Failure to obtain any 
of these resources will likely cause 
the entire parallel application to 
abort, or, even worse, “hang.” Most 
modern MPI implementations dis-
play friendly messages when this 
kind of error occurs.

e important thing to realize 
is that MPI_INIT is likely to involve 
communication and/or coordina-
tion between at least some subsets 
of processes in the MPI application. 
As such, although some MPI imple-
mentations take pains to optimize 
the process, MPI_INIT is typical-
ly treated as a “catch-all” function. 
Implementations tend to gather as 
much setup and initialization in 
MPI_INIT as possible in order to op-
timize the run of the program itself. 
For example, MPI_INIT may coordi-
nate between MPI processes to probe 
and discover the application’s topol-
ogy, potentially allowing underlying 
communication optimization later in 
the application. Hence, even though 

MPI_INIT may be “long,” its cost can 
be amortized over the duration of the 
parallel application’s run.

MPI_COMM_SIZE and 
MPI_COMM_RANK: 
Query Functions

e MPI_COMM_SIZE and MPI_
COMM_RANK functions are local func-
tions; they rarely require communi-
cation and coordination outside of 
the local MPI process. e MPI imple-
mentation almost always determines 
the size and ordering of processes in 
a communicator when that commu-
nicator is created (e.g., when MPI_
COMM_WORLD is created during MPI_
INIT). Hence, MPI_COMM_SIZE and 
MPI_COMM_RANK are typically local 
(and immediate) lookups.

MPI_SEND and MPI_RECV: 
Basic Sending and Receiving

MPI provides several different fla-
vors of sending and receiving mes-
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No MPI_INIT Needed 

Unknown to most MPI us-
ers, there are some func-

tions that can legally called 
before MPI_INIT. These are 
only are MPI_INITIALIZED , 
MPI_FINALIZED , and MPI_
GET_VERSION, which check 
to see if MPI_INIT and MPI_
FINALIZE have been invoked, 
and return the version of the 
MPI standard that is provided 
by the MPI implementation, 
respectively. In addition, these 
functions can also be called af-
ter an MPI_FINALIZE has 
been issued.

To Block or Not To Block

MPI_SEND and MPI_RECV are 
called “blocking” by the MPI-1 stan-
dard, but they may or may not ac-
tually block. Whether or not an un-
matched send will block typically 
depends on how much buffering 
the implementation provides. For 
example, short messages are usu-
ally sent “eagerly” — regardless of 
whether a matching receive has 
been posted or not. Long messages 
may be sent with a rendezvous pro-
tocol, meaning that it will not actu-
ally complete until the target has 
initiated a matching receive. This 
behavior is legal because the seman-
tics of MPI_SEND do not actually 
define whether a message has been 
sent when it returns. The only guar-
antee that MPI makes is that the 
buffer is able to be re-used when 
MPI_SEND returns.

Receives, by their definition, will 
not return until a matching mes-

sage has actually been received. This 
situation may be “immediate,” for 
example, if a matching short mes-
sage was previously eagerly sent. 

This is called an “unexpected” 
message, and MPI implementations 
typically provide some level of im-
plicit buffering for this condition: 
eagerly-sent, unmatched messages 
are simply stored in internal buffer-
ing at the target until a matching re-
ceive is posted by the application. A 
local memory copy is all that is nec-
essary to complete the receive.

Note that it is also legal for an 
MPI implementation to provide 
zero buffering — to effectively disal-
low unexpected messages and block 
MPI_SEND until a matching receive 
is posted (regardless of the size of 
the message). MPI applications that 
assume at least some level of under-
lying buffering are not conformant, 
and may run to completion under 
one MPI implementation but block 
in another.
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What’s in a Rank?

A criticism of MPI-1 is that the 
communicator concept was 

modeled around fixed groups of 
processes; processes could not ar-
bitrarily join and leave an MPI ap-
plication. Although this issue was 
fully addressed in MPI-2 when dy-
namic processes were introduced 
into the standard (although still 
modeled on fixed process sets), 
MPI-1 was deliberately designed 
around the concept of static pro-
cess groups. Some of the reasons 
behind this decision include:

1 Using static groups and fixed pro-
cess ordering allows the user ap-
plication to know how many peer 
processes it has. This information 
can affect setup decisions such as 
array sizes, data splitting, and com-
munication patterns. Because this 
size will never change, the appli-
cation developer is relieved of the 
burden of potentially having to re-
shape data structures in the mid-
dle of a run.

2 Imposing fixed ordering allows 
the application developer to easily 
use identification-based decisions. 
Since the MPI implementation is 
responsible for creating a consis-
tent global ordering, the MPI de-
veloper is guaranteed that a rank 

number in a given communicator 
refers to the same MPI process by all 
of its peers. For example, a common 
identification-based decision is to 
use rank 0 in MPI_COMM_WORLD to 
be a “manager,” and have all other 
ranks be “workers.”

3 The landmark paper entitled “Im-
possibility of Distributed Consen-
sus with One Faulty Process” by 
M. J. Fischer, N. A. Lynch, and M. S. 
Paterson published in the Journal 
of the ACM in April 1985 proves 
that group membership in an asyn-
chronous environment (such as a 
cluster) is impossible to determine 
absolutely. Although in practice, 
dynamic group membership can 
be determined for relatively small 
groups, as modern clusters grow 
in size, the “FLP Impossibility Re-
sult” would have created theoretical 
(and therefore practical) problems 
for large-scale asynchronous paral-
lel applications utilizing dynamic 
group membership.

Hence, even though MPI-1 was criti-
cized for being based on fixed, or-
dered process groups, it has proved 
to be a sound decision. Although 
an MPI implementation must be 
designed for scalability in order to 
handle arbitrarily large parallel ap-
plications, by point #3, the possibil-
ity of such an implementation is not 
limited by theoretical constraints.

sages. MPI_SEND and MPI_RECV 
are called “blocking,” meaning that 
they will not return until the mes-
sage buffer is available for use. 

Notice that this indicates noth-
ing about the status of the mes-
sage being sent or received — it 
only guarantees that the applica-
tion is able to re-use the message 
buffer.

Many of the arguments to MPI_
SEND and MPI_RECV (and the oth-
er point-to-point send and receive 
functions in MPI) are the same.

•  (buffer, count, datatype): is tri-
ple identifies the beginning of a 
buffer, the type of data, and how 
many items of that datatype will 
be sent/received. is data direct-
ly implies the size (and shape) of 
the buffer. Providing type infor-
mation for the buffer allows the 
MPI implementation to perform 
endian-swapping if the source 
and target processes have differ-
ent endian biases.

•  tag: is value is a logical separa-
tor between message types; it is 
typically used to distinguish be-
tween different messages sent on 
the same communicator.

•  (rank, communicator): is pair 
uniquely identifies the target 
peer process and a communica-
tion scope. For sends, the target 
is the destination process; for 
receives, it is the source process. 
Remember that each communica-
tor contains a unique communi-
cation context; MPI guarantees 
that a message sent on one com-
municator can only be received 
on that same communicator.

A sent message will only be received 
by a “matching” receive. A send and 
receive “match” when the send-
er and receiver use corresponding 
(tag, rank, communicator) triples:

•  e tag arguments must corre-
spond; the sender must use the 
same tag as the receiver, or the 
receiver must use the special 
MPI_ANY_TAG constant.

•  e target rank arguments must 
correspond; the sender must use 
the receiver’s rank and the receiv-
er must use either the sender’s 
rank or the special MPI_ANY_
SOURCE constant.

•  e communicator arguments 
must refer to the same underly-
ing communicator.

MPI_FINALIZE: 
Shutting Down

Analogous to MPI_INIT, MPI_FI-
NALIZE is conceptually simple: it 
shuts down the MPI communications 
layer. It is almost always the last MPI 
function invoked. Most MPI imple-
mentations recommend that MPI_
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Resources
MPI Forum
• www.mpi-forum.org

NCSA MPI tutorial
•  webct.ncsa.uiuc.edu:

8900public/MPI/

MPI — The Complete Refer-
ence: Volume 1, The MPI Core 
(2nd ed) (The MIT Press) by 
Marc Snir, Steve Otto, Steven 
Huss-Lederman, David Walker, 
and Jack Dongarra. 

MPI — The Complete Refer-
ence: Volume 2, The MPI Ex-
tensions (The MIT Press) by 
William Gropp, Steven Huss-
Lederman, Andrew Lumsdaine, 
Ewing Lusk, Bill Nitzberg, Wil-
liam Saphir, and Marc Snir.
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MPI, from page xx
FINALIZE be invoked as close to 
exiting the MPI process as possible. 
MPI_FINALIZE must be called to fin-
ish all correct MPI programs.

Note that it is possible for MPI_
FINALIZE to block. It is MPI_FI-
NALIZE ’s responsibility to shut 
down all network connections, re-
leases all resources, and generally 
cleans up the process space. is 
may require completing unfinished 
message passing. Although this will 
usually not occur with the simple 
MPI API calls discussed so far in 
this column, it can happen and is 
legal behavior for an MPI imple-
mentation.

Where To Go From Here?

Now you know more about the 
basics of MPI than you ever 
thought you would. e intent 
of this month’s column is to 

provide insight when debugging 
parallel applications by describing 
some aspects of how an MPI 
implementation works. Now you 
know why your parallel application 
seems to block for no reason, or 
why your application seems to go 
slowly at first and then speed up in 
later iterations.

Stay tuned: next month, we’ll 
discuss MPI collective communica-
tion capabilities.

Jeff Squyres is a research associate at In-
diana University and is the lead developer 
for the LAM implementation of MPI. You 
can reach him at jsquyres@lam-mpi.org

The semantics of 
MPI_SEND do not actu-
ally define whether a mes-
sage has been sent when 
it returns


