
MPI Mechanic
February 2004

www.clusterworld.com

Provided by ClusterWorld for
Jeff Squyres

cw.squyres.com

Copyright © 2004 ClusterWorld, All Rights Reserved

For individual private use only. Not to be reproduced or distributed without prior consent from ClusterWorld
(info@clusterworld.com)

8 CLUSTERWORLD volume 2 no 2 9 volume 2 no 2 CLUSTERWORLD

MPI Mechanic

debugging a parallel application or
the parallel run-time environment
(RTE) itself (e.g., when setting up a
new cluster). In these cases — par-
ticularly when using closed-source
MPI implementations — it may be
helpful to understand what MPI_
INIT is actually trying to do.

Every MPI implementation’s
MPI_INIT works differently.

In the first two columns, we covered
the basics and fundamentals: what
MPI is, some simple MPI example
programs, and how to compile and
run them. For this months column,
we will look at the “ping-pong” ex-
ample program in Listing One.

e ping-pong program starts
up MPI (MPI_INIT) on line , gets
the total number of peer MPI pro-
cesses and finds its own identity
(MPI_COMM_SIZE and MPI_COMM_
RANK on lines and), does some
basic message passing (MPI_SEND
and MPI_RECV on lines -), and
then finishes up (MPI_FINALIZE)
on line . is simple example
shows the use of six MPI functions.
Surprisingly complex parallel ap-
plications can be written with just
these six MPI functions.

Although there are hundreds
of available MPI API functions,
many MPI applications find that a
relatively small subset is suitable
for their needs. In that light, this
month’s column examines the six
MPI functions used in the ping-
pong example in detail. is analy-
sis includes not only what the MPI
standard specifies for each func-
tion’s functionality, but also some
of the more in-depth (and poten-
tially implementation-specific) is-
sues that frequently arise with MPI
applications, especially when using
one MPI application with multiple
MPI implementations.

MPI_INIT: The Rest
of the Story

Conceptually, MPI_INIT is very
simple: start up the MPI communi-
cations layer — it is almost always
the first MPI function invoked.
ere are, however, several func-

tions that can be invoked before
MPI_INIT — see the sidebar for
more information. Most MPI imple-
mentations recommend that MPI_
INIT be invoked as close to the
beginning of main() as possible.
is rule is as much as most MPI
developers need to know. But it can
be useful to know more — particu-
larly when debugging. You may be

What really happens during MPI_INIT

 LISTING ONE
 One MPI PingPong Program

 1 #include <stdio.h>
 2 #include <mpi.h>
 3
 4 int main(int argc, char **argv) {
 5 int rank, size, mesg, tag = 123;
 6 MPI_Status status;
 7
 8 MPI_Init(&argv, &argv);
 9 MPI_Comm_size(MPI_COMM_WORLD, &size);
10 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
11 if (size < 2) {
12 printf(“Need at least 2 processes!\n”);
13 } else if (rank == 0) {
14 mesg = 11;
15 MPI_Send(&mesg,1,MPI_INT,1,tag,MPI_COMM_WORLD);
16 MPI_Recv(&mesg,1,MPI_INT,1,tag,MPI_COMM_
 WORLD,&status);
17 printf(“Rank 0 received “%d” from rank 1\
 n”,mesg);
18 } else if (rank == 1) {
19 MPI_Recv(&mesg,1,MPI_INT,0,tag,MPI_COMM_
 WORLD,&status);
20 printf(“Rank 1 received “%d” from rank 0/
 n”,mesg);
21 mesg = 42;
22 MPI_Send(&mesg,1,MPI_INT,0,tag,MPI_COMM_WORLD);
23 }
24 MPI_Finalize();
25 return 0;
26 }
27 /* To compile and run the program:
28 * mpicc pingpong.c -o pingpong
29 * mpirun -np 2 pingpong
30 */

8 CLUSTERWORLD volume 2 no 2 9 volume 2 no 2 CLUSTERWORLD

Generally, its job is to create, initial-
ize, and make available all aspects of
the message passing layer. is may
even include launching addition-
al processes (typically peer MPI_
COMM_WORLD processes). at is,
some MPI implementations estab-
lish an MPI RTE before MPI_INIT
(and MPI_INIT simply establishes
a parallel application in that RTE)
while others create the RTE during
MPI_INIT. Although some paral-
lel environments are a natural fit
to one model or the other, since the
MPI standard does not specify an
MPI application’s execution model,
both are perfectly valid approaches.

MPI_INIT also typically al-
locates resources such as shared
memory, local interprocess commu-
nication channels, network com-
munication channels (TCP sock-
ets, Myrinet ports, and/or other
network-specific resources), and/or
“special” memory used for commu-
nicating with specialized network-
ing hardware. Failure to obtain any
of these resources will likely cause
the entire parallel application to
abort, or, even worse, “hang.” Most
modern MPI implementations dis-
play friendly messages when this
kind of error occurs.

e important thing to realize
is that MPI_INIT is likely to involve
communication and/or coordina-
tion between at least some subsets
of processes in the MPI application.
As such, although some MPI imple-
mentations take pains to optimize
the process, MPI_INIT is typical-
ly treated as a “catch-all” function.
Implementations tend to gather as
much setup and initialization in
MPI_INIT as possible in order to op-
timize the run of the program itself.
For example, MPI_INIT may coordi-
nate between MPI processes to probe
and discover the application’s topol-
ogy, potentially allowing underlying
communication optimization later in
the application. Hence, even though

MPI_INIT may be “long,” its cost can
be amortized over the duration of the
parallel application’s run.

MPI_COMM_SIZE and
MPI_COMM_RANK:
Query Functions

e MPI_COMM_SIZE and MPI_
COMM_RANK functions are local func-
tions; they rarely require communi-
cation and coordination outside of
the local MPI process. e MPI imple-
mentation almost always determines
the size and ordering of processes in
a communicator when that commu-
nicator is created (e.g., when MPI_
COMM_WORLD is created during MPI_
INIT). Hence, MPI_COMM_SIZE and
MPI_COMM_RANK are typically local
(and immediate) lookups.

MPI_SEND and MPI_RECV:
Basic Sending and Receiving

MPI provides several different fla-
vors of sending and receiving mes-

MPI Mechanic

No MPI_INIT Needed

Unknown to most MPI us-
ers, there are some func-

tions that can legally called
before MPI_INIT. These are
only are MPI_INITIALIZED ,
MPI_FINALIZED , and MPI_
GET_VERSION, which check
to see if MPI_INIT and MPI_
FINALIZE have been invoked,
and return the version of the
MPI standard that is provided
by the MPI implementation,
respectively. In addition, these
functions can also be called af-
ter an MPI_FINALIZE has
been issued.

To Block or Not To Block

MPI_SEND and MPI_RECV are
called “blocking” by the MPI-1 stan-
dard, but they may or may not ac-
tually block. Whether or not an un-
matched send will block typically
depends on how much buffering
the implementation provides. For
example, short messages are usu-
ally sent “eagerly” — regardless of
whether a matching receive has
been posted or not. Long messages
may be sent with a rendezvous pro-
tocol, meaning that it will not actu-
ally complete until the target has
initiated a matching receive. This
behavior is legal because the seman-
tics of MPI_SEND do not actually
define whether a message has been
sent when it returns. The only guar-
antee that MPI makes is that the
buffer is able to be re-used when
MPI_SEND returns.

Receives, by their definition, will
not return until a matching mes-

sage has actually been received. This
situation may be “immediate,” for
example, if a matching short mes-
sage was previously eagerly sent.

This is called an “unexpected”
message, and MPI implementations
typically provide some level of im-
plicit buffering for this condition:
eagerly-sent, unmatched messages
are simply stored in internal buffer-
ing at the target until a matching re-
ceive is posted by the application. A
local memory copy is all that is nec-
essary to complete the receive.

Note that it is also legal for an
MPI implementation to provide
zero buffering — to effectively disal-
low unexpected messages and block
MPI_SEND until a matching receive
is posted (regardless of the size of
the message). MPI applications that
assume at least some level of under-
lying buffering are not conformant,
and may run to completion under
one MPI implementation but block
in another.

10 CLUSTERWORLD volume 2 no 2 11 volume 2 no 2 CLUSTERWORLD

What’s in a Rank?

A criticism of MPI-1 is that the
communicator concept was

modeled around fixed groups of
processes; processes could not ar-
bitrarily join and leave an MPI ap-
plication. Although this issue was
fully addressed in MPI-2 when dy-
namic processes were introduced
into the standard (although still
modeled on fixed process sets),
MPI-1 was deliberately designed
around the concept of static pro-
cess groups. Some of the reasons
behind this decision include:

1 Using static groups and fixed pro-
cess ordering allows the user ap-
plication to know how many peer
processes it has. This information
can affect setup decisions such as
array sizes, data splitting, and com-
munication patterns. Because this
size will never change, the appli-
cation developer is relieved of the
burden of potentially having to re-
shape data structures in the mid-
dle of a run.

2 Imposing fixed ordering allows
the application developer to easily
use identification-based decisions.
Since the MPI implementation is
responsible for creating a consis-
tent global ordering, the MPI de-
veloper is guaranteed that a rank

number in a given communicator
refers to the same MPI process by all
of its peers. For example, a common
identification-based decision is to
use rank 0 in MPI_COMM_WORLD to
be a “manager,” and have all other
ranks be “workers.”

3 The landmark paper entitled “Im-
possibility of Distributed Consen-
sus with One Faulty Process” by
M. J. Fischer, N. A. Lynch, and M. S.
Paterson published in the Journal
of the ACM in April 1985 proves
that group membership in an asyn-
chronous environment (such as a
cluster) is impossible to determine
absolutely. Although in practice,
dynamic group membership can
be determined for relatively small
groups, as modern clusters grow
in size, the “FLP Impossibility Re-
sult” would have created theoretical
(and therefore practical) problems
for large-scale asynchronous paral-
lel applications utilizing dynamic
group membership.

Hence, even though MPI-1 was criti-
cized for being based on fixed, or-
dered process groups, it has proved
to be a sound decision. Although
an MPI implementation must be
designed for scalability in order to
handle arbitrarily large parallel ap-
plications, by point #3, the possibil-
ity of such an implementation is not
limited by theoretical constraints.

sages. MPI_SEND and MPI_RECV
are called “blocking,” meaning that
they will not return until the mes-
sage buffer is available for use.

Notice that this indicates noth-
ing about the status of the mes-
sage being sent or received — it
only guarantees that the applica-
tion is able to re-use the message
buffer.

Many of the arguments to MPI_
SEND and MPI_RECV (and the oth-
er point-to-point send and receive
functions in MPI) are the same.

• (buffer, count, datatype): is tri-
ple identifies the beginning of a
buffer, the type of data, and how
many items of that datatype will
be sent/received. is data direct-
ly implies the size (and shape) of
the buffer. Providing type infor-
mation for the buffer allows the
MPI implementation to perform
endian-swapping if the source
and target processes have differ-
ent endian biases.

• tag: is value is a logical separa-
tor between message types; it is
typically used to distinguish be-
tween different messages sent on
the same communicator.

• (rank, communicator): is pair
uniquely identifies the target
peer process and a communica-
tion scope. For sends, the target
is the destination process; for
receives, it is the source process.
Remember that each communica-
tor contains a unique communi-
cation context; MPI guarantees
that a message sent on one com-
municator can only be received
on that same communicator.

A sent message will only be received
by a “matching” receive. A send and
receive “match” when the send-
er and receiver use corresponding
(tag, rank, communicator) triples:

• e tag arguments must corre-
spond; the sender must use the
same tag as the receiver, or the
receiver must use the special
MPI_ANY_TAG constant.

• e target rank arguments must
correspond; the sender must use
the receiver’s rank and the receiv-
er must use either the sender’s
rank or the special MPI_ANY_
SOURCE constant.

• e communicator arguments
must refer to the same underly-
ing communicator.

MPI_FINALIZE:
Shutting Down

Analogous to MPI_INIT, MPI_FI-
NALIZE is conceptually simple: it
shuts down the MPI communications
layer. It is almost always the last MPI
function invoked. Most MPI imple-
mentations recommend that MPI_

MPI Mechanic

See MPI, page xx

10 CLUSTERWORLD volume 2 no 2 11 volume 2 no 2 CLUSTERWORLD

Resources
MPI Forum
• www.mpi-forum.org

NCSA MPI tutorial
• webct.ncsa.uiuc.edu:

8900public/MPI/

MPI — The Complete Refer-
ence: Volume 1, The MPI Core
(2nd ed) (The MIT Press) by
Marc Snir, Steve Otto, Steven
Huss-Lederman, David Walker,
and Jack Dongarra.

MPI — The Complete Refer-
ence: Volume 2, The MPI Ex-
tensions (The MIT Press) by
William Gropp, Steven Huss-
Lederman, Andrew Lumsdaine,
Ewing Lusk, Bill Nitzberg, Wil-
liam Saphir, and Marc Snir.

MPI Mechanic

MPI, from page xx
FINALIZE be invoked as close to
exiting the MPI process as possible.
MPI_FINALIZE must be called to fin-
ish all correct MPI programs.

Note that it is possible for MPI_
FINALIZE to block. It is MPI_FI-
NALIZE ’s responsibility to shut
down all network connections, re-
leases all resources, and generally
cleans up the process space. is
may require completing unfinished
message passing. Although this will
usually not occur with the simple
MPI API calls discussed so far in
this column, it can happen and is
legal behavior for an MPI imple-
mentation.

Where To Go From Here?

Now you know more about the
basics of MPI than you ever
thought you would. e intent
of this month’s column is to

provide insight when debugging
parallel applications by describing
some aspects of how an MPI
implementation works. Now you
know why your parallel application
seems to block for no reason, or
why your application seems to go
slowly at first and then speed up in
later iterations.

Stay tuned: next month, we’ll
discuss MPI collective communica-
tion capabilities.

Jeff Squyres is a research associate at In-
diana University and is the lead developer
for the LAM implementation of MPI. You
can reach him at jsquyres@lam-mpi.org

The semantics of
MPI_SEND do not actu-
ally define whether a mes-
sage has been sent when
it returns

