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Why Not Use MPI_SEND and MPI_RECV?

An obvious question that arises is: why bother? Why not simple use a 
linear loop over MPI_SEND and MPI_RECV to effect the same kind 

of operations? In short: it’s all about optimization. The MPI built-in collec-
tives usually offer the following advantages:

•  Avoid MPI_SEND and MPI_RECV : An MPI implementation is able to 
optimize each collective operation in many ways that are not available 
to user applications. For example, on SMP nodes, collective operations 
may occur directly in shared memory and avoid the entire MPI_SEND / 
MPI_RECV protocol stack.

•  Multiple algorithms: There are typically many algorithms that can be 
used for implementing a collective operation (even when using MPI_
SEND / MPI_RECV), each yielding different performance characteristics 
in a given run-time environment. Factors such as the size and configura-
tion of the communicator as well as the size and shape of the data to be 
communicated may influence the specific algorithm that is used. Much 
research has been conducted in this area over the past 20 years; let the 
MPI implementors worry about it - not you.

•  Performance portability: Collective algorithms that work well on a 
cluster may or may not work well on “big iron” parallel machines. Us-
ing the collective operations in the native MPI implementation usually 
means that you’ll get algorithms that are tuned for the platform that 
your application is running on - one of the main goals of MPI.

The moral of the story: it is generally safer to trust your MPI implemen-
tation’s collective algorithms than to implement your own. While no MPI 
implementation is perfect, most modern versions do a reasonable job of 
optimizing collective operations.

Zen and the Art of 
MPI Collectives
March — a time of renewal. Tulips 
and grass pushing through the snow. 
Hundreds and thousands of blades 
of grass, all growing at the same 
time. In parallel. Hmm. How do they 
know? Do they coordinate? Perhaps 
they have some kind of collective in-
telligence? Do they use MPI?

The Story So Far

In previous editions of this column, 
we’ve talked about the six basic 
functions of MPI, how MPI_INIT 
and MPI_FINALIZE actually work, 
and discussed in agonizing detail 
the differences between MPI ranks, 
MPI processes, and CPU processors. 
Armed with this knowledge, you 
can write large, sophisticated paral-
lel programs. So what’s next? 

Collective communication is a 
next logical step — MPI’s native 
ability to involve a group of MPI 
processes together in a single com-
munication, possibly involving 
some intermediate computation.

 MPI Collective Basic Concepts

Many parallel algorithms include 
the concept of a collective opera-
tion - an operation in which mul-
tiple processes participate in order 
to compute a result. A global sum is 
an easy example to discuss — each 
process contributes an integer that 
is summed in an atomic fashion 
and the final result is made avail-
able (perhaps just to a single “root” 
process, or perhaps made available 
to all participating processes).

A brief recap: MPI defines all 
point-to-point communications in 
terms of “communicators.” Com-
municators are a fixed set of or-

dered processes with a unique con-
text. Communication that occurs 
on a communicator is guaranteed 
to not collide with communications 
occurring on other communicators.

MPI also defines collective com-
munication in terms of commu-
nicators. All collective operations 
explicitly involve every process in 
a communicator. Specifically: a col-
lective will not be complete until 
all processes in the communicator 
have participated. Due to the na-
ture of some of MPI’s pre-defined 
collective operations (see the side-

bar “Will at Collective Block?”), 
this may or may not imply blocking 
behavior. ere is one exception to 
this rule: MPI_BARRIER is guaran-
teed not to return until all process-
es in the communicator have en-
tered the barrier.

ere are two main kinds of 
collectives defined in MPI: rooted 
and non-rooted. “Rooted” opera-
tions have a single process acting as 
the explicit originator or receiver 
of data. For example, MPI_BCAST 
broadcasts a buffer from a root 
process to all other processes in 
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the communicator; MPI_GATHER 
gathers buffers from each process 
in the communicator to a single, 
combined buffer in the root pro-
cess. “Non-rooted” operations are 
those where there is either no ex-
plicit originator/receiver or all pro-
cesses are sending/receiving data. 
MPI_BARRIER , for example, has 
no explicit senders/receivers, but 
MPI_ALLGATHER both performs a 
gather operation from all processes 
in the processor and makes the re-
sult available to all processes.

Barrier Synchronization

One of the simplest collective op-
erations to describe is the barrier 
synchronization. MPI’s function 
for this is MPI_BARRIER . It takes a 
single significant argument: a com-
municator. 

One should note that, while the 
argument lists of the MPI C, C++, 
and Fortran bindings for a given 
function are typically similar in 
terms of “significant” arguments, 
there are some minor differences. 
One notable difference is that all 
MPI Fortran calls take a final “ierr” 
argument that the C and C++ bind-
ings do not. e “ierr” argument is 
used for passing errors back to the 
caller (errors are handled different-
ly in the C and C++ bindings). 

As described above, MPI_
BARRIER does not return until all 
processes in the communicator 
have entered the barrier. e 
seemingly-simple barrier operation 
is a good example illustrating that a 
variety of different algorithms that 
can be used: 

•  linear: the root receives from all 
processes followed by the root 
sending to all processes

•  logrithmic: a binomial tree gath-
er to the root followed by a bino-
mial tree scatter from the root
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•  -level latency split algorithm: a 
local gather, global gather, global 
scatter, and finally a local scatter

•  N-level latency split algorithm: 
similar to the above, but for N 
levels, not 

•  shared memory: each process in-
crements a shared counter; when 
the counter equals the number of 
processes, exit the barrier

e barrier operation has been re-
searched for years (particularly in 
the area of shared memory algo-
rithms; the shared memory algo-
rithm listed above will typically 
provide dismal performance); many 
other algorithms are possible; the 
above list just a few possibilities. 

ere’s no good reason for a 
user application to include imple-
mentations for all of these algo-
rithms; the MPI implementation 
should provide some form of an op-
timized barrier (which may be one 
or more of the above algorithms) so 
that the user application does not 
have to worry about such issues.

Be wary of overusing MPI_
BARRIER . It is frequently tempting 
to insert barriers for ease of control 
and simplicity of code. However, 

barriers are usually unnecessary 
when writing MPI programs — 
MPI’s tag/communicator matching 
rules for point-to-point communi-
cator and “fence” operation for one-
sided operations (to be described in 
a later column) typically obviate 
the need for barriers. Indeed, a 
barrier that is executed in every 
iteration of a repetitive code can 
introduce artificial performance 
limitations.

Broadcast

Another simple collective opera-
tion to describe is the broadcast: 
data is sent from one process to 
all other processes in a communi-
cator. 

Its function prototype is simi-
lar to MPI_SEND ; it takes a buffer, 
count, MPI datatype, and commu-
nicator — just like MPI_SEND. But, 

Resources
MPI Forum 
• www.mpi-forum.org

NCSA MPI tutorial
•  webct.ncsa.uiuc.edu:8900/

public/MPI/

 LISTING ONE 
 Simple Broadcast MPI Program
 

 1 void simple_broadcast(void) { 
 2  int rank, value;
 3  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 4  if (rank == 0) {
 5   printf(“Enter a value: “);
 6   scanf(“%d”, &value);
 7  }
 8  MPI_Bcast(&value,1,MPI_INT,0,MPI_COMM_
      WORLD);
 9  printf(“Rank %d has value: %d\n”,rank,
      value);
10 }
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rather than requiring a destination 
rank and tag, MPI_BCAST accepts a 
root rank specifying which process 
contains the source buffer. Listing 
One shows a simple program using 
MPI_BCAST.

MPI_COMM_WORLD rank  will 
prompt for an integer and then 
broadcast it to all other processes. 
Note that all processes call MPI_
BCAST in exactly the same way; the 
same parameters are used in each 
process. 

At the root (MPI_COMM_WORLD 
rank ), the value variable is used 
as an input buffer; value is used 
as an output buffer in all other pro-
cesses. After MPI_BCAST returns, 
all processes have the same value 
in value .

Reduction Operations

Another type of common collec-
tive operation is reductions. Pre-
defined and user-defined opera-
tions can be applied to data as it is 
combined to form a single answer. 
A simple program showing a global 
sum is shown in Listing Two.

MPI_SUM is a predefined opera-
tion that computes the sum of the 
input buffers provided by all pro-
cesses. e resulting sum is placed 
in the output buffer, sum . 

Note that just like MPI_BCAST, 
all processes execute the same col-
lective function - but only the root 

(MPI_COMM_WORLD rank ) re-
ceives the resulting sum value. On 
all other processes, the value of the 
sum variable is unmodified by MPI. 

e function MPI_ALLRE-
DUCE operates in the same way as 
MPI_REDUCE except that all pro-
cesses receive the answer, not just 
the root. 

You can think of it as an MPI_
REDUCE immediately followed by 
an MPI_BCAST (although, for op-
timization reasons, it may not be 
implemented that way).

MPI has several other pre-de-
fined operations, including (but not 
limited to): maximum, minimum, 
product, logical and bit-wise AND, 
OR, and XOR, and maximum/
minimum location (essentially for 
finding the process rank with the 
maximum/minimum value)

Other Collective Operations

MPI has other collective operations 
that are worth investigating, such 
as: scatter, gather, all-to-all, and 
both internal and external scan. 

Some of these operations have 
multiple variants; for example, 
there is both a rooted gather (where 
one process receives all the data) 
and an “allgather” (where all pro-
cesses receive all the data).

ese operations are described 
in detail in the MPI- and MPI- 
standards documents.

Where To Go From Here?

e short version of the column is: 
MPI collectives are your friends. 
Use them. 

Don’t code up your own collec-
tive algorithms unless you really 
need to. If the collectives in your 
MPI implementation perform poor-
ly, write to your Congressman.

Communicators were men-
tioned frequently this month; next 
month, we’ll discuss them in detail 
along with their partner in crime: 
MPI groups.

Jeff Squyres is a research associate at In-
diana University and is the lead developer 
for the LAM implementation of MPI. 
jsquyres@lam-mpi.org

 LISTING TWO

 Simple Reduction MPI Program
 

 1 void simple_reduction(void) {
 2   int rank, sum;
 3   MPI_Comm_rank(MPI_COMM_WORLD,&rank);
 4   MPI_Reduce(&rank,&sum,1,MPI_INT,MPI_
       SUM,0,MPI_COMM_WORLD);
 5   if (rank == 0)
 6    printf(“Sum of rank values: %d\n”,sum);
 7 }

Will That Collective Block?

As mentioned earlier in the 
column, the only collec-

tive that guarantees to block is 
MPI_BARRIER . All other col-
lectives are defined to block 
only until their portion of the 
collective is complete. In some 
cases — depending on how the 
particular collective algorithm 
is implemented — this may be 
immediately. In other cases, 
processes may block, but for 
varying amounts of time.

Consider MPI_GATHER 
— an operation where every 
process sends its buffer to the 
root. As soon as each process 
sends its buffer, it can return. In 
this scenario, the return from 
MPI_GATHER on non-root 
ranks does not imply anything 
about the completion of MPI_
GATHER on any other process 
in the communicator. The only 
thing that is known is that the 
root process will be the last one 
to complete.


