
MPI Mechanic
March 2004

www.clusterworld.com

Provided by ClusterWorld for
Jeff Squyres

cw.squyres.com

Copyright © 2004 ClusterWorld, All Rights Reserved

For individual private use only. Not to be reproduced or distributed without prior consent from ClusterWorld
(info@clusterworld.com)

2 CLUSTERWORLD volume 2 no 3 3 volume 2 no 3 CLUSTERWORLD

Why Not Use MPI_SEND and MPI_RECV?

An obvious question that arises is: why bother? Why not simple use a
linear loop over MPI_SEND and MPI_RECV to effect the same kind

of operations? In short: it’s all about optimization. The MPI built-in collec-
tives usually offer the following advantages:

• Avoid MPI_SEND and MPI_RECV : An MPI implementation is able to
optimize each collective operation in many ways that are not available
to user applications. For example, on SMP nodes, collective operations
may occur directly in shared memory and avoid the entire MPI_SEND /
MPI_RECV protocol stack.

• Multiple algorithms: There are typically many algorithms that can be
used for implementing a collective operation (even when using MPI_
SEND / MPI_RECV), each yielding different performance characteristics
in a given run-time environment. Factors such as the size and configura-
tion of the communicator as well as the size and shape of the data to be
communicated may influence the specific algorithm that is used. Much
research has been conducted in this area over the past 20 years; let the
MPI implementors worry about it - not you.

• Performance portability: Collective algorithms that work well on a
cluster may or may not work well on “big iron” parallel machines. Us-
ing the collective operations in the native MPI implementation usually
means that you’ll get algorithms that are tuned for the platform that
your application is running on - one of the main goals of MPI.

The moral of the story: it is generally safer to trust your MPI implemen-
tation’s collective algorithms than to implement your own. While no MPI
implementation is perfect, most modern versions do a reasonable job of
optimizing collective operations.

Zen and the Art of
MPI Collectives
March — a time of renewal. Tulips
and grass pushing through the snow.
Hundreds and thousands of blades
of grass, all growing at the same
time. In parallel. Hmm. How do they
know? Do they coordinate? Perhaps
they have some kind of collective in-
telligence? Do they use MPI?

The Story So Far

In previous editions of this column,
we’ve talked about the six basic
functions of MPI, how MPI_INIT
and MPI_FINALIZE actually work,
and discussed in agonizing detail
the differences between MPI ranks,
MPI processes, and CPU processors.
Armed with this knowledge, you
can write large, sophisticated paral-
lel programs. So what’s next?

Collective communication is a
next logical step — MPI’s native
ability to involve a group of MPI
processes together in a single com-
munication, possibly involving
some intermediate computation.

 MPI Collective Basic Concepts

Many parallel algorithms include
the concept of a collective opera-
tion - an operation in which mul-
tiple processes participate in order
to compute a result. A global sum is
an easy example to discuss — each
process contributes an integer that
is summed in an atomic fashion
and the final result is made avail-
able (perhaps just to a single “root”
process, or perhaps made available
to all participating processes).

A brief recap: MPI defines all
point-to-point communications in
terms of “communicators.” Com-
municators are a fixed set of or-

dered processes with a unique con-
text. Communication that occurs
on a communicator is guaranteed
to not collide with communications
occurring on other communicators.

MPI also defines collective com-
munication in terms of commu-
nicators. All collective operations
explicitly involve every process in
a communicator. Specifically: a col-
lective will not be complete until
all processes in the communicator
have participated. Due to the na-
ture of some of MPI’s pre-defined
collective operations (see the side-

bar “Will at Collective Block?”),
this may or may not imply blocking
behavior. ere is one exception to
this rule: MPI_BARRIER is guaran-
teed not to return until all process-
es in the communicator have en-
tered the barrier.

ere are two main kinds of
collectives defined in MPI: rooted
and non-rooted. “Rooted” opera-
tions have a single process acting as
the explicit originator or receiver
of data. For example, MPI_BCAST
broadcasts a buffer from a root
process to all other processes in

MPI Mechanic  

2 CLUSTERWORLD volume 2 no 3 3 volume 2 no 3 CLUSTERWORLD

the communicator; MPI_GATHER
gathers buffers from each process
in the communicator to a single,
combined buffer in the root pro-
cess. “Non-rooted” operations are
those where there is either no ex-
plicit originator/receiver or all pro-
cesses are sending/receiving data.
MPI_BARRIER , for example, has
no explicit senders/receivers, but
MPI_ALLGATHER both performs a
gather operation from all processes
in the processor and makes the re-
sult available to all processes.

Barrier Synchronization

One of the simplest collective op-
erations to describe is the barrier
synchronization. MPI’s function
for this is MPI_BARRIER . It takes a
single significant argument: a com-
municator.

One should note that, while the
argument lists of the MPI C, C++,
and Fortran bindings for a given
function are typically similar in
terms of “significant” arguments,
there are some minor differences.
One notable difference is that all
MPI Fortran calls take a final “ierr”
argument that the C and C++ bind-
ings do not. e “ierr” argument is
used for passing errors back to the
caller (errors are handled different-
ly in the C and C++ bindings).

As described above, MPI_
BARRIER does not return until all
processes in the communicator
have entered the barrier. e
seemingly-simple barrier operation
is a good example illustrating that a
variety of different algorithms that
can be used:

• linear: the root receives from all
processes followed by the root
sending to all processes

• logrithmic: a binomial tree gath-
er to the root followed by a bino-
mial tree scatter from the root

MPI Mechanic

• -level latency split algorithm: a
local gather, global gather, global
scatter, and finally a local scatter

• N-level latency split algorithm:
similar to the above, but for N
levels, not 

• shared memory: each process in-
crements a shared counter; when
the counter equals the number of
processes, exit the barrier

e barrier operation has been re-
searched for years (particularly in
the area of shared memory algo-
rithms; the shared memory algo-
rithm listed above will typically
provide dismal performance); many
other algorithms are possible; the
above list just a few possibilities.

ere’s no good reason for a
user application to include imple-
mentations for all of these algo-
rithms; the MPI implementation
should provide some form of an op-
timized barrier (which may be one
or more of the above algorithms) so
that the user application does not
have to worry about such issues.

Be wary of overusing MPI_
BARRIER . It is frequently tempting
to insert barriers for ease of control
and simplicity of code. However,

barriers are usually unnecessary
when writing MPI programs —
MPI’s tag/communicator matching
rules for point-to-point communi-
cator and “fence” operation for one-
sided operations (to be described in
a later column) typically obviate
the need for barriers. Indeed, a
barrier that is executed in every
iteration of a repetitive code can
introduce artificial performance
limitations.

Broadcast

Another simple collective opera-
tion to describe is the broadcast:
data is sent from one process to
all other processes in a communi-
cator.

Its function prototype is simi-
lar to MPI_SEND ; it takes a buffer,
count, MPI datatype, and commu-
nicator — just like MPI_SEND. But,

Resources
MPI Forum
• www.mpi-forum.org

NCSA MPI tutorial
• webct.ncsa.uiuc.edu:8900/

public/MPI/

 LISTING ONE
 Simple Broadcast MPI Program

 1 void simple_broadcast(void) {
 2 int rank, value;
 3 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 4 if (rank == 0) {
 5 printf(“Enter a value: “);
 6 scanf(“%d”, &value);
 7 }
 8 MPI_Bcast(&value,1,MPI_INT,0,MPI_COMM_
 WORLD);
 9 printf(“Rank %d has value: %d\n”,rank,
 value);
10 }

4 CLUSTERWORLD volume 2 no 3

rather than requiring a destination
rank and tag, MPI_BCAST accepts a
root rank specifying which process
contains the source buffer. Listing
One shows a simple program using
MPI_BCAST.

MPI_COMM_WORLD rank  will
prompt for an integer and then
broadcast it to all other processes.
Note that all processes call MPI_
BCAST in exactly the same way; the
same parameters are used in each
process.

At the root (MPI_COMM_WORLD
rank ), the value variable is used
as an input buffer; value is used
as an output buffer in all other pro-
cesses. After MPI_BCAST returns,
all processes have the same value
in value .

Reduction Operations

Another type of common collec-
tive operation is reductions. Pre-
defined and user-defined opera-
tions can be applied to data as it is
combined to form a single answer.
A simple program showing a global
sum is shown in Listing Two.

MPI_SUM is a predefined opera-
tion that computes the sum of the
input buffers provided by all pro-
cesses. e resulting sum is placed
in the output buffer, sum .

Note that just like MPI_BCAST,
all processes execute the same col-
lective function - but only the root

(MPI_COMM_WORLD rank ) re-
ceives the resulting sum value. On
all other processes, the value of the
sum variable is unmodified by MPI.

e function MPI_ALLRE-
DUCE operates in the same way as
MPI_REDUCE except that all pro-
cesses receive the answer, not just
the root.

You can think of it as an MPI_
REDUCE immediately followed by
an MPI_BCAST (although, for op-
timization reasons, it may not be
implemented that way).

MPI has several other pre-de-
fined operations, including (but not
limited to): maximum, minimum,
product, logical and bit-wise AND,
OR, and XOR, and maximum/
minimum location (essentially for
finding the process rank with the
maximum/minimum value)

Other Collective Operations

MPI has other collective operations
that are worth investigating, such
as: scatter, gather, all-to-all, and
both internal and external scan.

Some of these operations have
multiple variants; for example,
there is both a rooted gather (where
one process receives all the data)
and an “allgather” (where all pro-
cesses receive all the data).

ese operations are described
in detail in the MPI- and MPI-
standards documents.

Where To Go From Here?

e short version of the column is:
MPI collectives are your friends.
Use them.

Don’t code up your own collec-
tive algorithms unless you really
need to. If the collectives in your
MPI implementation perform poor-
ly, write to your Congressman.

Communicators were men-
tioned frequently this month; next
month, we’ll discuss them in detail
along with their partner in crime:
MPI groups.

Jeff Squyres is a research associate at In-
diana University and is the lead developer
for the LAM implementation of MPI.
jsquyres@lam-mpi.org

 LISTING TWO

 Simple Reduction MPI Program

 1 void simple_reduction(void) {
 2 int rank, sum;
 3 MPI_Comm_rank(MPI_COMM_WORLD,&rank);
 4 MPI_Reduce(&rank,&sum,1,MPI_INT,MPI_
 SUM,0,MPI_COMM_WORLD);
 5 if (rank == 0)
 6 printf(“Sum of rank values: %d\n”,sum);
 7 }

Will That Collective Block?

As mentioned earlier in the
column, the only collec-

tive that guarantees to block is
MPI_BARRIER . All other col-
lectives are defined to block
only until their portion of the
collective is complete. In some
cases — depending on how the
particular collective algorithm
is implemented — this may be
immediately. In other cases,
processes may block, but for
varying amounts of time.

Consider MPI_GATHER
— an operation where every
process sends its buffer to the
root. As soon as each process
sends its buffer, it can return. In
this scenario, the return from
MPI_GATHER on non-root
ranks does not imply anything
about the completion of MPI_
GATHER on any other process
in the communicator. The only
thing that is known is that the
root process will be the last one
to complete.

