
MPI Mechanic
April 2004

www.clusterworld.com

Provided by ClusterWorld for
Jeff Squyres

cw.squyres.com

Copyright © 2004 ClusterWorld, All Rights Reserved

For individual private use only. Not to be reproduced or distributed without prior consent from ClusterWorld
(info@clusterworld.com)

2 CLUSTERWORLD volume 2 no 4 3 volume 2 no 4 CLUSTERWORLD

MPI Mechanic

Actual e-mail spams seen recently:

• Banned MPI CD! e government
doesn’t want you to see this!

• Our licensed MPI programmers
will prescribe parallel applica-
tions for free.

• Enlarge your parallel application
performance by x with MPIagra!

• Nigerian bank director needs
MPI developers to receive
USM in offshore funding.

Am I the only one that gets these?

The Story So Far

We’ve been progressively leading
up to more complicated topics in
this column — starting with the
basic functions of MPI, moving on
to the differences between ranks,
processors, and processes, detail-
ing what MPI_INIT and MPI_FI-
NALIZE really mean. Last month,
we discussed collective communi-
cation. But wait — if you call in the
next minutes, there’s even more!
(Sorry — spam flashbacks.)

Groups and communicators can
play a critical role in the selection of
parallel algorithms that you use in
your application. Although parallel
applications can be implemented in
different ways, MPI provides a rich
set of process grouping features that
are frequently under-utilized in user
applications (particularly with re-
spect to collective communications).

MPI Groups and Communicators

I’ve made references to “communi-
cators” in previous editions of this

Everything You Wanted to Know About Groups and Communicators

column and usually made cryptic
statements about “fixed sets,” “or-
dered processes,” and “communica-
tion contexts.” But I’ve never really
explained what a communicator is.
It’s important to understand com-
municators and what they mean to
your application because commu-
nicators are the basis for all MPI
point-to-point and collective com-
munication.

Communicators comprise two
elements: a group and a unique com-
munications context (actually, it
may be two groups — more on that
below). Let’s discuss groups first.

MPI Groups

An MPI group is a fixed, ordered
set of unique MPI processes. e
exact definition of an MPI process
was discussed in the Jan edi-
tion of this column. Essentially, the
MPI implementation is free to de-
fine what “MPI process” means. Ex-
amples include: a thread, a POSIX
process, or a Windows process.
Although most MPI implementa-
tions use the operating system’s
concept of a “process,” some do de-
fine threads as an MPI process. A
process can appear at most exactly
once in a group — it is either in the
group or not; a process is never in
a group more than once. A process
can be in multiple groups, however.

More specifically, an MPI group is
a local representation of a set of MPI
processes. MPI groups are represent-
ed by the opaque type MPI_Group
in C applications. Hence, a process
can contain local representations of
many MPI groups — some of which
may not include the process itself.

MPI defines a rich set of opera-
tions on groups; since a group is

essentially an ordered set (in the
algebraic sense of the word), an ap-
plication can perform group unions,
intersections, inclusions, exclusions,
comparisons, and so on. ese oper-
ations, while not commonly invoked
in many user applications, form the
backbone of communicator func-
tionality and may be used by the
MPI implementation itself.

As an example, one of the group
operations provided by MPI is the
comparison of two groups (MPI_
GROUP_COMPARE), which can yield
one of three results:

• MPI_IDENT : e two groups con-
tain the same set of processes in
the same order

• MPI_SIMILAR : e two groups
contain the same set of processes,
but in a different order

• MPI_UNEQUAL : e two groups
do not contain the same set of
processes.

While seemingly an unimportant
operation, it provides insight into
one of MPI’s central philosophies:
the membership in a group is fixed
and strongly ordered. is feature
is most apparent to users because
communicators have fixed, ordered
memberships. But this is only a by-
product of the fact that a communi-
cator contains a group.

MPI Communicators

Communicators are represented in
MPI C programs by the type MPI_
Comm (Fortran programs use inte-
gers). Although communicator is a
local MPI object (i.e., it physically
resides in the MPI process), it rep-

2 CLUSTERWORLD volume 2 no 4 3 volume 2 no 4 CLUSTERWORLD

MPI Mechanic

resents a process’ membership in a
larger process group. Specifically,
even though MPI_Comm objects are
local, they are always created col-
lectively between all members in
the group that the communicator
contains. Hence, a process can only
have an MPI_Comm handle for com-
municators of which it is a member.

e context of a communicator
is effectively a guarantee that a mes-
sage sent on one communicator will
never be received on a different com-
municator. Consider the arguments
of the MPI_SEND and MPI_RECV
functions (C binding shown below):

int MPI_Send(
 void *buf,
 int count,
 MPI_Datatype dtype,
 int dest,
 int tag,
 MPI_Comm comm
);
int MPI_Recv(
 void *buf,
 int count,
 MPI_Datatype dtype,
 int src,
 int tag,
 MPI_Comm comm,
 MPI_Status *status
)

A sent message will only be deliv-
ered to a matching receive in the
destination process. is means
that the MPI_SEND has to use the
triple (dest , tag , comm) that
specifies a peer process in the com-
municator who has posted a receive
with a corresponding (src, tag ,
comm) triple. e src and dest
values must be equal, or the receiv-
er can use the wildcard MPI_ANY_
TAG ; the tag values must be equal,
or the receiver can use the wildcard
MPI_ANY_TAG ; the comm values
must represent the same commu-
nicator.

Note the last part — the comm

values must represent the same
communicator; there is no wildcard
communicator value. e commu-
nicator therefore functions simi-
larly to the “tag” argument in MPI_
SEND (and friends) — think of it as
a system-level tag. Specifically, a
message sent on a given (tag, com-
municator) tuple will only ever be
received on the same (tag, commu-
nicator) tuple by the receiver (with
the MPI_ANY_TAG exception).

Communicator Properties

Remember that a communicator
contains a group, and a group is a
strongly ordered set of process-
es. erefore, communicators are
also strongly ordered sets of pro-
cesses. More importantly, the or-
der is guaranteed to be the same
on all processes in the communica-
tor (group). Hence, the process re-
ferred to by (index, communicator)
is guaranteed to be the same on all
processes in the communicator.

e “index” value ranges from
zero to the number of process-
es in the communicator minus .
is index value is called the pro-
cess’ “rank” in the communicator.
Hence, MPI point-to-point commu-
nication routines (e.g., MPI_SEND
and MPI_RECV) are expressed in

terms of ranks and communicators
— the source or destination of the
message.

Don’t get carried away with the
term “rank,” however. A rank refers
to a specific process in a specific com-
municator. A single rank value may
therefore refer to multiple differ-
ent MPI processes. For example, it
is not correct to say “send to rank
.” It is more correct to say “send to
MPI_COMM_WORLD rank .”

ere are actually two kinds of
communicators: intracommunica-
tors (those that only contain one
group of processes) and intercom-
municators (those that contain
two groups of processes). Let’s talk
about the most common kind first,
intracommunicators (one group).

Intracommunicators

e name “intracommunicator”
specifically refers to communica-
tion within a single group. MPI_
COMM_WORLD is perhaps the most
famous of intracommunicators. It
is defined in the MPI- standard
as “all processes the local process
can communicate with after ini-
tialization (including itself), and
is defined once MPI_INIT has
been called.” Although the specific
meaning of this statement varies

Communicators: What’s the point?

So what’s all this hoopla about communicators? Why bother? Why not
just send and receive messages, filtering them via tags?
One answer is parallel libraries. Libraries that use message passing

need to have a way to guarantee that the messages they send and receive
will never be confused with messages sent and received by the user appli-
cation. Communicators, with their unique (and private) communication
context, allow this message passing safety.

Many parallel libraries, for example, use the MPI_COMM_DUP call at
startup time to duplicate MPI_COMM_WORLD — the pre-defined com-
municator created after MPI_INIT that contains all processes that were
started together. The new communicator will have exactly the same pro-
cess group, but a different (unique) context than MPI_COMM_WORLD .
The library can then use this communicator for all of its communications.

4 CLUSTERWORLD volume 2 no 4 5 volume 2 no 4 CLUSTERWORLD

MPI Mechanic

between different MPI implemen-
tations, it generally means that all
MPI processes started via mpi-
run will be included in MPI_COMM_
WORLD together.

Another, lesser-known pre-de-
fined intracommunicator is MPI_
COMM_SELF, which is defined to
only include the local process. is
communicator can be useful for
loopback kinds of communicators,
depending on the application’s al-
gorithms.

Intercommunicators

Intercommunicators refers to com-
munication between two groups in
a single communicator — a local
group and a remote group. When
using an intercommunicator, the
initiating process is defined to be
in the local group and the target
process is defined to be in the re-
mote group. For example, a process
invoking MPI_SEND on an inter-
communicator is in the comm’s lo-
cal group, but the dest rank ar-
gument is relative to the remote
group. Similarly, a process invoking
MPI_RECV on an intercommunica-
tor is in the comm’s local group, but
the src rank argument is relative
to the remote group.

Intercommunicators are some-
what of an advanced topic; I’ll re-
turn to them a few months from
now.

Topologies

MPI also contains a full set of to-
pology-based communicators uti-
lizing on N-dimensional Cartesian
shapes as well as arbitrary graphs.
e rationale is that if the commu-
nicator (and therefore the MPI im-
plementation) is aware of the un-
derlying network topology, the user
application can effectively “Send
this message to the peer on my
right,” and the MPI application can

both figure out who the peer “on
my right” is as well as potentially
optimize the message routing.

My own opinion is that topolo-
gies are the best kept secret in MPI.
ey are rarely utilized by real user
applications for two reasons:

1 e setup function calls are
somewhat bulky and inconve-
nient

2 Since no users use them, few MPI
implementations have optimized
them, and there is little perfor-
mance gain realized

It’s a vicious circle — no one uses
them because they aren’t opti-
mized, and most MPI implemen-
tors don’t optimize them because
no one uses them.

Operations on Communicators

Now that you know what commu-
nicators are, what can you do with
them?

Perhaps the most common two
operations invoked on communica-
tors are functions that have been
mentioned in previous editions
of this column: MPI_COMM_RANK
and MPI_COMM_SIZE . e for-
mer returns the rank of the calling
process in the communicator; the
latter returns the total size of the
local group in the communicator.
ese two functions are critical for
identity-based algorithms.

MPI_COMM_DUP (mentioned in
the “Communicators - what’s the
point?” sidebar) takes a single com-
municator as input and creates a
new communicator as output. e

new communicator has exactly the
same process membership and or-
der (i.e., the groups in the two com-
municators are MPI_IDENT), but
they have different communication
contexts. MPI_COMM_DUP is a col-
lective call — all processes in the
input communicator must call MPI_
COMM_DUP before it will return.

Another common communicator
operation is MPI_COMM_SPLIT (also
a collective call). is operation takes
an input communicator and splits it
into sub-communicators:

int MPI_Comm_split(
 MPI_Comm comm,
 int color,
 int key,
 MPI_Comm *newcomm
);

Each calling process will provide
the same input comm argument.
Processes that use the same color
will end up in a new communicator
together (newcomm). e special
color MPI_UNDEFINED can also be
used, in which case the calling pro-
cess will receive MPI_COMM_NULL
in newcomm (i.e., it won’t be part of
any new communicators). e key
argument is used for relative or-
dering in each process’ respective
newcomm .

MPI_COMM_SPLIT is useful to
partition groups of processes into
sub-communicators for specific
purposes. Here’s a simple example:

 1 int rank;
 2 MPI_Comm row, col;
 3 MPI_Comm_rank(
 MPI_COMM_WORLD,
 &rank
);
 4 MPI_Comm_split(
 MPI_COMM_WORLD,
 rank / 4,
 0,

 &row
See MPI, page xx

Essentially, the MPI
implementation is free
to define what
“MPI process” means

4 CLUSTERWORLD volume 2 no 4 5 volume 2 no 4 CLUSTERWORLD

);
 5 MPI_Comm_split(
 MPI_COMM_WORLD,
 rank % 4,
 0,
 &col
);

Assuming that this program was
invoked with processes (i.e., a
two-dimensional x grid), the
calling process will end up being
in two new communicators: row,
which contains all processes in the
same row as this process, and col,
which contains all the processes in
the same column as this process.

Where To Go From Here?

As with MPI collectives, MPI com-
municators are your friends. Use
MPI_DUP to create safe communi-
cation contexts in different parts of

your application, and use the sub-
setting capabilities of MPI_COMM_
SPLIT instead of creating arbitrari-
ly complicated grouping schemes
with additional arrays, pointers, or
lookup tables.

Next month: datatypes! We’ve
talked about sending messages and
shown simple examples of involv-
ing a single integer or character -
real application need to send much
more complex data.

Jeff Squyres is a research associate at In-
diana University and is the lead developer
for the LAM implementation of MPI.
Reach him at jsquyres@lam-mpi.org.

MPI Mechanic

Resources
MPI Forum
• http://www.mpi-forum.org/

MPI — The Complete Refer-
ence: Volume 1, The MPI Core
(2nd ed) (The MIT Press) by
Marc Snir, Steve Otto, Steven
Huss-Lederman, David Walker,
and Jack Dongarra. ISBN 0-262-
69215-5.

MPI — The Complete Refer-
ence: Volume 2, The MPI Exten-
sions (The MIT Press) by William
Gropp, Steven Huss-Lederman,
Andrew Lumsdaine, Ewing Lusk,
Bill Nitzberg, William Saphir, and
Marc Snir. ISBN 0-262-57123-4.

NCSA MPI tutorial
• webct.ncsa.uiuc.edu:8900/

public/MPI

My own opinion is that
topologies are the best
kept secret in MPI. They
are rarely utilized by real
user applications

MPI, from page xx

