MPI Mechanic
May 2004

Provided by ClusterWorld for
Jeff Squyres
cw.squyres.com

cl t W ldTM

REDEFINING HIGH PERFORMANCE COMPUTING

www.clusterworld.com

Copyright © 2004 ClusterWorld, All Rights Reserved

For individual private use only. Not to be reproduced or distributed without prior consent from ClusterWorld
(info@clusterworld.com)

MPI Mechanic

JEFF SQUYRES

How to Succeed in Datatypes Without Really Trying

A novice asked the master: “I have a
program that sometimes runs and
sometimes aborts. I have followed
the rules of programming, yet I am
totally baffled. What is the reason
for this?”

The master replied: “You are
confused because you do not under-
stand MPI. The rules of program-
ming are transitory; only MPl is
eternal. Therefore you must con-
template MPI before you receive
enlightenment.”

“But how will I know when I
have received enlightenment?”
asked the novice.

“Your program will then run
correctly,” replied the master.

The Story So Far

This month we’ll discuss MPI
datatypes. As the name implies,
datatypes are used to represent

the format and layout of the data
that is being sent and received. MPI
datatypes are extremely flexible

— so much so that they are likely to
be quite confusing to the beginner.
When properly used, MPI datatypes
can both provide good communica-
tions performance as well as reduce
application complexity.

Typed Messages

Although MPI allows untyped mes-
sages, most applications utilize
typed messages, meaning that the
MPI implementation is aware of the
format and layout of the message
being sent or received.

Specifically, a message is sim-
ply a dense sequence of zeros and
ones. Only when it is assigned a for-
mat and layout at its source or des-
tination buffer does the sequence
have any meaning. MPI allows the
structure of the buffer to be arbi-

trary. A buffer is described with a
type map — an abstract sequence
of types paired with correspond-
ing displacements that describes
the format and layout of a buf-
fer. A datatype is an instance of a
type map. Since messages are typi-
cally described with stream-like
qualities, they are described with
a type signature — a sequence of
datatypes (but no displacements).
Hence, a given type signatures
may correspond to many different
datatypes (type maps).

Putting it all together: a buffer
with a given type map is sent with a
corresponding datatype, creating a
message with a corresponding type
signature. The receiver provides
a buffer and datatype (implying a
specific type map) which directly
corresponds to the type signature

LISTING ONE

1 #finclude <stdio.h>

3 unsigned int i = 258;

return O;

}

that the will be used to place the
message in the target buffer.

Message Data Format

The canonical example of format-
ting differences is the “endian” prob-
lem, which refers to the order in
which bits are stored in memory for
multi-byte values (e.g., a four byte
integer). So-called “big endian” sys-
tems write the least significant byte
(Isb) at the highest memory posi-
tion; “little endian” systems write
the Isb at the lowest memory posi-
tion. Listing One is a sample C pro-
gram that shows the difference.

The program is fairly simple
— assign a value into an unsigned
integer and the display the actual
values stored in memory (assuming
a four-byte integer). Running this
program on an Intel x86 machine

Showing Data Format in Memory

2 int main(int argec, char* argv([]) {

4 unsigned char *a = (unsigned char *) &i;
5 printf(“%x %x %x %x\n”, al[3], al2],
6
7

a[l], al0]);

LISTING TWO

double my_ array[10][10];

MPI_Datatype row, array;

MPI_Type_commit(&row);

/* ...fill my_array... */

0 N O U W N

MPI Bcast(my_array, 1,

Building a 2D Matrix Datatype

MPI Type_ vector(l, 10, 1,

MPI Type_ vector(l, 10, 1, K
MPI_Type_commit (& mewm) ; <== This should be &arl‘a_

MPI_DOUBLE, &row);

row, &array);

array, 0, MPI_COMM_ WORLD);

2 CLUSTERWORLD volume2 no5s

<-- This should be &array

MPI Mechanic

(little endian) resultsin: “0 0 1
2”, whereas running this program
on a Sun SPARC machine (big endi-
an) resultsin: “2 1 0 0"

MPI implementations capable
of handling heterogeneous environ-
ments will automatically perform en-
dian translation of typed messages.
For example, when sending the inte-
ger value of 1,234 from an MPI pro-
cess on a Sun SPARC, if it is received
on a corresponding MPI process on
an Intel x86 machine, MPI will do the
appropriate byte swapping to ensure
that the received value is 1,234.

Another data format issue is the
size of a given type. The C type dou-
ble, for example, may have differ-
ent sizes on different machines (e.g.,
four bytes or eight bytes). Indeed,
sometimes even different compilers
on the same machine will have dif-
ferent data sizes for the same type.
The behavior of an MPI implemen-
tation when faced with mismatched
data sizes varies; most implemen-
tations will either upcast/truncate

LISTING THREE

1 struct my struct {
int int_values[10];
double average;

int flag;
};

O 00 N O U & W DN

int i,
MPI Datatype types[4]
MPI_CHAR, MPI_INT };
11 MPI_ Aint disps|[4];

—
o

16 for (i = 3; i >= 0;

17 disps[i]

20 }

Building an MPI Datatype for a C Structure

char debug_name[MAX NAME_ LEN];

void make datatype(MPI_ Datatype *new_type) {
struct my_struct foo;
counts[4] = { 10,

12 MPI_Address(foo.int_values, &disps[0]);

13 MPI_ Address(&foo.average, &disps[l]);

14 MPI Address(foo.debug name, &disps([2]);

15 MPI Address(&foo.flag, &disps[3]);

--1)

-= disps[0];

18 MPI Type_ struct(4, counts, disps, types, new_type);
19 MPI Type_commit(new_type);

Watch Out For That Pointer, Eugene!

Care should be taken when sending pointer values from one process
to another. Although MPI will ensure to transport the pointer value
correctly to the target process (it’s just an integer, after all), it may have no
meaning at the destination since pointers in one process’ virtual memory
may have no relation to addresses in another process’ memory.

There are limited scenarios where this is useful (e.g., echoing pointers
back in ACKs), but consider yourself warned: be very sure of what you are
doing when sending pointers between processes.

(depending on whether small data is
being received into a large buffer or
vice versa) or abort.

Simple Data

Format Example

An MPI message is described in
terms of number of elements and
the type of each element (as op-
posed to total number of bytes). MPI
contains pre-built definitions of
many datatypes intrinsic to C, C++,
and Fortran. These datatypes can be
used to send and receive both vari-
ables and arrays. For example:

1, MAX NAME LEN, 1 };
{ MPI INT, MPI DOUBLE,

MPI_Status status;
int values[10];
MPI_Recv(value,

10,

MPI_TINT,

src,

tag,

comm,

&status);

This code fragment will receive ten
integers into the values array. Any
endian differences will be automat-
ically handled by MPI (if the imple-
mentation is capable of it).

Message Data Layout

Although messages are dense
streams of zeros and ones, the buf-
fers where they originate and termi-
nate need not be contiguous — they
may not even share the same data
format and layout. Specifically, the
type maps used on the sender and re-
ceiver may be different — as long as
the type signatures used to send and
receive the message are the same, the
data will be transferred propetly.
This allows the sending and re-
ceiving of arbitrary data structures
from one process to another. When
used properly, this flexibility can
dramatically reduce overhead, la-
tency, and application complexity.
For example, consider a C struc-
ture that contains a int and an
double. Assume that both sender
and receiver have the same sizes for
both types, but the sender aligns
double on eight byte boundaries

volume 2| no5 CLUSTERWORLD 3

MPI Mechanic

and the receiver aligns double on
four byte boundaries. The overall
size of the structure will be differ-
ent between the two, as will the
placement of the data in memory

— even though the values will be
the same. When used with appropri-
ate datatypes, MPI will automatical-
ly read the message from the source
buffer using the sender’s layout and
write it to the destination buffer us-
ing the destination’s layout.

Vector Layout Example

MPI provides functions for building
common types of data representa-
tion: contiguous data, vectors, and
indexed data. Listing Two shows
making a nested vector datatype
that describes a 2D matrix.

Line 3 builds a vector to de-
scribe a single row — thisis 1 set
of 10 double instances with a
stride of 1. Line 5 builds a second
datatype describing 1 set of 10
rows with a stride of 1 — effective-
ly the entire 2D array. Note that
MPI requires committing a datatype
with MPI_TYPE_COMMIT before it
can be used (lines 4 and 6). Once
the array datatype is committed,
it is used to broadcast the array on
line 8. The array type can also be
used with any other communica-
tion function, such as MPI_ SEND,
MPI_RECY, etc.

Indexed datatypes can be built
with the MPI_TYPE_INDEXED
function (not described here).

C Structure Layout Example

Although the MPI vector and in-
dex interfaces can build complex
and useful datatypes, by definition,
they cannot describe arbitrary data
layouts. The MPI_TYPE_STRUCT
function allows the specification of
arbitrary type maps.

The use of MPI_TYPE_STRUCT is
admittedly fairly clunky — it is nec-
essary to specify arrays of field off-
sets, counts, and datatypes. Listing

One Message vs. Many Messages

common knee-jerk reaction to the complexity of MPI datatypes is “I'll
Ajust send my structure in a series of messages rather than construct a
datatype.” Consider the C structure show in Listing Two.

The contents of my_struct could easily be sent in four separate mes-
sages. But consider the actual cost of sending four messages instead of con-
structing an MPI datatype and sending one message: although the same
amount of data will be sent, you'll likely be sending at least four times the
overhead for the same amount of data, causing the overall efficiency ratio to
drop. Specifically, most MPl implementations send a fixed amount of over-
head for each message. Hence, you'll be sending that fixed overhead three
more times than is necessary. Additionally, you may incur up to four times
the latency before the entire dataset is received at the destination.

If this structure is sent frequently in your application (e.g., once every
iteration), or if you have to send arrays of this structure, the extra over-
head and latency can quickly add up and noticeably degrade performance.

Instead, it is frequently better to make an appropriate datatype and
send the entire structure in a single message. Indeed, entire arrays of the
structure can also be sent in a single message, dramatically increasing ef-
ficiency as compared to sending four messages for each structure instance

in the array.

Three shows a program construct-
ing an MPI datatype for a complex C
structure (note that several short-
cuts were taken for space reasons).
Note the use of the type MPI_
Aintonline11. AnMPI_Aintis
defined as an integer guaranteed to
be large enough to hold an address.
C programmers are likely to be con-
fused by lines 12-15: the MPI_AD-
DRESS function is equivalent to
assigning the address of the first
argument to the second arguments.
The purpose of having MPI_AD -
DRESS is twofold: 1) avoid ugly cast-
ing, and 2) provide “pointer-like”
semantics in Fortran. Lines 16-17
are intended to subtract off the base
address of the structure, effectively
converting the disps array to hold
relative displacements instead of ab-
solute addresses.
TheMPI_TYPE_STRUCT call on
line 18 creates a datatype from the
type map components, and it is com-
mitted on line 19. The new_type
datatype can now be used to send in-
stances of struct my_struct.

q CLUSTERWORLD volume2 no5s

Resources

The Tao of Programming
by Geoffrey James. ISBN
0931137071.

MPI Forum
http://www.mpi-forum.org/

NCSA MPI tutorial
webct.ncsa.uiuc.edu:8900/
public/MPI

Where to Go From Here?

This column has really only touched
on some parts of MPI datatypes —
there’s more to MPI datatypes than
meets the eye. Stay tuned for next
month’s column where we’ll dis-
cuss more features and issues with
datatypes.

Jeff Squyres is a research associate at In-
diana University and is the lead developer
for the LAM implementation of MPL
Reach him at jsquyres@lam-mpi.org

