
MPI Mechanic
June 2004

www.clusterworld.com

Provided by ClusterWorld for
Jeff Squyres

cw.squyres.com

Copyright © 2004 ClusterWorld, All Rights Reserved

For individual private use only. Not to be reproduced or distributed without prior consent from ClusterWorld
(info@clusterworld.com)

2 CLUSTERWORLD volume 2 no 6 3volume 2 no 6 CLUSTERWORLD

MPI Mechanic

Jeff is off this month, supposedly
writing his dissertation. Personally,
I think he’s procrastinating — do-
ing “research” in Disneyland, hiking
the Himalayas, working on MPI-
or some other academic endeavor.
In the meantime, hello, I’m Bri-
an — I’ll be your host this month.
We have lots of flavors on tap here
at the House of MPI, including the
new, Atkins-friendly, low-carb MPI_
TYPE_CREATE_RESIZED.

A Quick Datatype Review

Last month we examined basic MPI
datatypes. Datatypes provide neces-
sary information to the MPI library
about data format and location. As
we saw last month, MPI provides
both basic datatypes (MPI_INT)
and the ability to create more ad-
vanced user-defined datatypes.
MPI can use the type information
to perform any format conversion,
such as endian or size, necessary to
communicate between two peers.
Datatypes also simplify sending C
structures or arrays of elements.

is month, we expand on our
datatype coverage. Without knowl-
edge of the basics of MPI datatypes,
this month may be more difficult
than the previous articles to fol-
low. So find last month’s magazine
and read the basics of datatypes be-
fore getting started. In addition to
performance benefits from letting
the MPI do packing and unpacking,
datatypes can simplify an applica-
tion and help ensure messages are
received correctly.

How to Avoid Datatypes

Despite last month’s article and
the remainder of this article, there

Return of the MPI Datatypes
are times where using user-defined
datatypes are not the best option.
Legacy applications may require ex-
plicitly buffers for sending, as was
common with libraries before MPI.
Data layout and size may be dy-
namic during execution of the ap-
plication, which makes defining
datatypes difficult. For these situ-
ations, MPI provides the ability to
explicitly pack noncontiguous data
into user provided buffers using
MPI_PACK , with MPI_UNPACK for
unpacking. Listing One shows an
example of using MPI_PACK to send
the structure used last month, rath-
er than creating a matching type.

How MPI stores the data is im-
plementation defined, including
the ability to add internally useful
meta-data. It is possible that the
data added to buf is larger than
the size of struct my_struct.

MPI_PACK_SIZE is provided to de-
termine the maximum buffer size
needed to pack the given data.

Using MPI_PACK avoids de-
termining offsets and creating
datatypes. Packing allows the same
buffer to be sent multiple times,
reducing the workload on MPI. On
the other hand, pack forces a mem-
ory copy into the user provided buf-
fer when MPI may not have needed
to do any packing. Packing is also
error-prone, as MPI often does not
check that data is unpacked in the
same order it was packed.

Sending Columns of a Matrix

In C, sending a row of a matrix is
easy, as the row is stored in con-
secutive bytes of memory. A col-
umn is more difficult, as the row
must be traversed before arriving
at the next element in the column.
is space is often called the stride.

 LISTING ONE
 Building a Buffer Using MPI_Pack

 1 struct my_struct {
 2 int int_value[10];
 3 double average;
 4 char debug_name[MAX_NAME_LEN];
 5 int flag;
 6 };
 7 void send_data(struct my_struct data,
 MPI_Comm comm, int rank) {
 8 char buf[BUFSIZE];
 9 int pos = 0;
10 MPI_Pack(&data.int_value, 10, MPI_INT,
 buf, BUFSIZE, &pos, comm);
11 MPI_Pack(&data.average, 1, MPI_DOUBLE,
 buf, BUFSIZE, &pos, comm);
12 MPI_Pack(&data.debug_name,MAX_NAME_LEN,
 MPI_CHAR, buf, BUFSIZE, &pos, comm);
13 MPI_Pack(&data.flag, 1, MPI_INT, buf,
 BUFSIZE, &pos, comm);
14 MPI_Send(buf, pos, MPI_PACKED, rank, 0, comm);
15 }

2 CLUSTERWORLD volume 2 no 6 3volume 2 no 6 CLUSTERWORLD

MPI Mechanic

Without user-defined datatypes,
there are two ways to send a col-
umn to another process: send each
element individually or pack the el-
ements into an array by hand. e
code below shows how to avoid the
hassle by creating an MPI datatype.

double buf[10][12];
MPI_Datatype column;
MPI_type_vector(10,
 1, 12,
 MPI_DOUBLE,
 &column);
MPI_Type_commit(&column);
MPI_Send(buf[2], 1,
 column, 0,
 0, MPI_COMM_WORLD);

In the listing above, the type is
committed and immediately used.
Once committed, the datatype
can be reused throughout the pro-
gram. By adjusting the index in
the MPI_SEND, any column in the
matrix can be sent. Not only is the

number of lines of code required to
send a column using user-defined
datatypes smaller than if packed
the buffer by hand, an MPI imple-
mentation has the option to avoid
packing the data before sending.
Some communication channels al-
low “vectored sends,” meaning the
ability to send from many data lo-
cations and receive into many data
locations.

Send Only What Is Needed

us far, we have looked at ways to
send simple datatypes, an entire
matrix, parts of a matrix, and an
entire structure. It is also possible
to send only part of a structure.
Listing Two provides an example
of sending selected elements of a
structure using datatypes. For ex-
ample, in a simple traffic simula-
tion, a local vehicle may only need
to know the position and velocity of
a remote vehicle. Locally, fuel and
destination are also tracked.

e basics of creating the tmp_
car_type datatype should look
familiar from last month’s article.
e calls to MPI_ADDRESS are used
to find the relative displacements
between position and velocity.
Of course, there is some space be-
tween the two arrays for the des-
tination field. MPI will only send
the two fields desired, ignoring the
empty space. As long as MPI_AD-
DRESS is used to find offsets, holes
in the middle of a structure defini-
tion will be taken care of “magical-
ly” by MPI.

e call to MPI_TYPE_CREATE_
RESIZED is new to this example and
is used to fill in the gaps for MPI.
Based on the information given to
MPI when tmp_car_type is creat-
ed, the structure appears to end after
the final element of the velocity

Why not MPI_BYTE

MPI provides the datatype MPI_BYTE to represent a byte of memo-
ry. The MPI implementation will not perform any datatype conver-

sion on the buffer. So why not use MPI_BYTE and avoid all the complex-
ity of datatypes?

Using MPI_BYTE prevents MPI from performing any data conversion
(as discussed in last month’s article). Data padding and alignment issues,
normally completely hidden from the user, must be taken into account.
In C, this is generally not a problem because C programmers are used to
dealing with padding issues. However, Fortran generally does a good job
of handling padding and alignment behind the scenes. Using MPI_BYTE
forces dangerous assumptions about the sizes of various datatypes.

 LISTING TWO

 Using Parts of a Structure

 1 struct vehicle {
 2 double position[3];
 3 double destination[3];
 4 double velocity[3];
 5 double fuel;
 6 }
 7 struct vehicle cars[10];
 8 MPI_Datatype tmp_car_type, car_type;
 9 int i, counts[2]={ 3, 3 };
10 MPI_Datatype types[2]={ MPI_DOUBLE, MPI_DOUBLE };
11 MPI_Aint disps[2];
12 MPI_Address(&cars[0].position, &disps[0]);
13 MPI_Address(&cars[0].velocity, &disps[1]);
14 disps[1] -= disps[0];
15 MPI_Type_struct(2, counts, disps, types,
 &tmp_car_type);
16 MPI_Type_create_resized(tmp_car_type, 0,
 sizeof(struct vehicle),
 &car_type);
16 MPI_Type_commit(&car_type);
...
17 MPI_Send(cars, 10, car_type, ...);

4 CLUSTERWORLD volume 2 no 6

MPI Mechanic

field. If an array of tmp_car_type
is sent, MPI will look for the start of
the second structure directly after
the last element of the velocity array
(accounting for padding, of course).
Instead of finding the first element
of the position array for the second
structure, it will find the fuel el-
ement from the first struct. MPI_
TYPE_CREATE_RESIZED provides
the lower bound and extent of the
datatype.

Both terms will be discussed in
the next section, but the extent in
this example is the true size of the
vehicle structure.

Lower Bounds, Upper
Bounds, and Extents

e vehicle example introduced
one of the most confusing parts of
datatypes: bounds and extents. Ev-
ery datatype has a lower bound, up-
per bound, and extent. e lower
bound is the offset from the start
of the user buffer to the start of the
first datatype entry for the buf-
fer. In the vehicle example above, if
the fuel entry was first instead of
last, MPI would need to know that
it should skip over the fuel entry
to find the destination entry. In
this case, the lower bound would be
sizeof(double). MPI_ADDRESS
can be used to compute the lower
bound, similar to how offsets be-
tween datatype entries are found.
e lower bound can either be ad-
justed using MPI_TYPE_CREATE_
RESIZED or MPI_TYPE_LB .

e upper bound is end of the
last element in a datatype, plus
any required padding. In any array,
the next entry begins directly af-
ter the upper bound of the current
entry. e extent is the size of the
datatype, or the upper bound mi-
nus the lower bound.

Although the datatype’s upper
bound can be set using MPI_TYPE_
UB , it is often much easier and less

error-prone to set the extent using
MPI_TYPE_CREATE_RESIZED.

One-off Datatypes

In each of the datatype examples
presented thus far, an instance
of a structure is used to deter-
mine addresses of each element
in the datatype. e addresses are
then used to determine offsets to
use in the datatype. e resulting
datatype can be used to describe
any instance of the same structure.
However, there are some instances
where a “one-off” datatype is creat-
ed to describe a structure that will
only exist once. In these cases, de-
termining addresses to find offsets,
only to use the offsets to recompute
the addresses is wasteful.

MPI provides the constant
MPI_BOTTOM to for instances
where computing offsets will be
wasteful.

MPI_Send(MPI_BOTTOM, 5,
 custom_type,...)

e MPI will still have to do some
offset math in order to find the el-
ements in the entire array. MPI_
BOTTOM can be tempting, as it saves
a couple of lines of code. However,
MPI_BOTTOM should generally be
avoided. One of the advantages of
datatypes is that they can be reused
to avoid errors in user applications.
If absolute addresses are used with
MPI_BOTTOM , it is not possible to
reuse the datatype in a generic way.

Resources
MPI Forum (including the MPI-
1 and MPI-2 specification docu-
ments): www.mpi-forum.org

NCSA MPI tutorial:
webct.ncsa.uiuc.edu:8900/
public/MPI

Common Pitfalls
and Misconceptions

One common misconception with
MPI datatypes is that they are slow.
Early in the life of MPI, using MPI
datatypes to pack messages was of-
ten slower than packing the data by
hand. Datatype performance has
been and continues to be an active
area of research, allowing datatype
implementations to achieve much
higher performance. Some MPI im-
plementations are even capable of
doing scatter/gather sends and re-
ceives, completely eliminating the
need to pack messages for transfer.
In short, poor datatype performance
is generally a thing of the past, and
it’s getting better every day.

MPI provides a huge, often
overwhelming, number of options
when working with datatypes. Al-
though it is often tempting to use
the predefined datatypes and avoid
complexity, proper use of datatypes
can reduce errors and improve
performance. Using a complex
datatype removes the problem of
ensuring the correct order of sends
and receives to move a structure
piecemeal.

Where to Go From Here?

is column provides a number
of examples of using datatypes to
their full potential. e resourc-
es listed in the side bar present
even more examples of utilizing
datatypes to simplify applications.
Next month, we will move on to
any implementor’s favorite subject:
common mistakes in using MPI and
how to avoid them.

Brian Barrett is a parallel systems ana-
lyst at the Information Sciences Insti-
tute, University of Southern California
and a developer on the LAM implemen-
tation of MPI. He can be reached at
brbarret@lam-mpi.org

