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Jeff is off this month, supposedly 
writing his dissertation. Personally, 
I think he’s procrastinating — do-
ing “research” in Disneyland, hiking 
the Himalayas, working on MPI- 
or some other academic endeavor. 
In the meantime, hello, I’m Bri-
an — I’ll be your host this month. 
We have lots of flavors on tap here 
at the House of MPI, including the 
new, Atkins-friendly, low-carb MPI_
TYPE_CREATE_RESIZED.

A Quick Datatype Review

Last month we examined basic MPI 
datatypes. Datatypes provide neces-
sary information to the MPI library 
about data format and location. As 
we saw last month, MPI provides 
both basic datatypes (MPI_INT) 
and the ability to create more ad-
vanced user-defined datatypes. 
MPI can use the type information 
to perform any format conversion, 
such as endian or size, necessary to 
communicate between two peers. 
Datatypes also simplify sending C 
structures or arrays of elements.

is month, we expand on our 
datatype coverage. Without knowl-
edge of the basics of MPI datatypes, 
this month may be more difficult 
than the previous articles to fol-
low. So find last month’s magazine 
and read the basics of datatypes be-
fore getting started. In addition to 
performance benefits from letting 
the MPI do packing and unpacking, 
datatypes can simplify an applica-
tion and help ensure messages are 
received correctly.

How to Avoid Datatypes

Despite last month’s article and 
the remainder of this article, there 

Return of the MPI Datatypes
are times where using user-defined 
datatypes are not the best option. 
Legacy applications may require ex-
plicitly buffers for sending, as was 
common with libraries before MPI. 
Data layout and size may be dy-
namic during execution of the ap-
plication, which makes defining 
datatypes difficult. For these situ-
ations, MPI provides the ability to 
explicitly pack noncontiguous data 
into user provided buffers using 
MPI_PACK , with MPI_UNPACK for 
unpacking. Listing One shows an 
example of using MPI_PACK to send 
the structure used last month, rath-
er than creating a matching type.

How MPI stores the data is im-
plementation defined, including 
the ability to add internally useful 
meta-data. It is possible that the 
data added to buf is larger than 
the size of struct my_struct. 

MPI_PACK_SIZE is provided to de-
termine the maximum buffer size 
needed to pack the given data.

Using MPI_PACK avoids de-
termining offsets and creating 
datatypes. Packing allows the same 
buffer to be sent multiple times, 
reducing the workload on MPI. On 
the other hand, pack forces a mem-
ory copy into the user provided buf-
fer when MPI may not have needed 
to do any packing. Packing is also 
error-prone, as MPI often does not 
check that data is unpacked in the 
same order it was packed.

Sending Columns of a Matrix

In C, sending a row of a matrix is 
easy, as the row is stored in con-
secutive bytes of memory. A col-
umn is more difficult, as the row 
must be traversed before arriving 
at the next element in the column. 
is space is often called the stride. 

 LISTING ONE 
 Building a Buffer Using MPI_Pack
 
 1 struct my_struct {
 2   int int_value[10];
 3   double average;
 4   char debug_name[MAX_NAME_LEN];
 5   int flag;
 6 };
 7 void send_data(struct my_struct data, 
                  MPI_Comm comm, int rank) {
 8   char buf[BUFSIZE];
 9   int pos = 0;
10   MPI_Pack(&data.int_value, 10, MPI_INT, 
              buf, BUFSIZE, &pos, comm);
11   MPI_Pack(&data.average, 1, MPI_DOUBLE, 
              buf, BUFSIZE, &pos, comm);
12   MPI_Pack(&data.debug_name,MAX_NAME_LEN, 
              MPI_CHAR, buf, BUFSIZE, &pos, comm);
13   MPI_Pack(&data.flag, 1, MPI_INT, buf, 
              BUFSIZE, &pos, comm);
14   MPI_Send(buf, pos, MPI_PACKED, rank, 0, comm);
15 }
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Without user-defined datatypes, 
there are two ways to send a col-
umn to another process: send each 
element individually or pack the el-
ements into an array by hand. e 
code below shows how to avoid the 
hassle by creating an MPI datatype.

double buf[10][12];
MPI_Datatype column;
MPI_type_vector(10, 
                1, 12, 
                MPI_DOUBLE, 
                &column);
MPI_Type_commit(&column);
MPI_Send(buf[2], 1, 
         column, 0, 
         0, MPI_COMM_WORLD);

In the listing above, the type is 
committed and immediately used. 
Once committed, the datatype 
can be reused throughout the pro-
gram. By adjusting the index in 
the MPI_SEND, any column in the 
matrix can be sent. Not only is the 

number of lines of code required to 
send a column using user-defined 
datatypes smaller than if packed 
the buffer by hand, an MPI imple-
mentation has the option to avoid 
packing the data before sending.  
Some communication channels al-
low “vectored sends,” meaning the 
ability to send from many data lo-
cations and receive into many data 
locations.

Send Only What Is Needed

us far, we have looked at ways to 
send simple datatypes, an entire 
matrix, parts of a matrix, and an 
entire structure. It is also possible 
to send only part of a structure. 
Listing Two provides an example 
of sending selected elements of a 
structure using datatypes. For ex-
ample, in a simple traffic simula-
tion, a local vehicle may only need 
to know the position and velocity of 
a remote vehicle. Locally, fuel and 
destination are also tracked.

e basics of creating the tmp_
car_type datatype should look 
familiar from last month’s article. 
e calls to MPI_ADDRESS are used 
to find the relative displacements 
between position and velocity. 
Of course, there is some space be-
tween the two arrays for the des-
tination field. MPI will only send 
the two fields desired, ignoring the 
empty space. As long as MPI_AD-
DRESS is used to find offsets, holes 
in the middle of a structure defini-
tion will be taken care of “magical-
ly” by MPI.

e call to MPI_TYPE_CREATE_
RESIZED is new to this example and 
is used to fill in the gaps for MPI. 
Based on the information given to 
MPI when tmp_car_type is creat-
ed, the structure appears to end after 
the final element of the velocity 

Why not MPI_BYTE

MPI provides the datatype MPI_BYTE  to represent a byte of memo-
ry. The MPI implementation will not perform any datatype conver-

sion on the buffer. So why not use MPI_BYTE  and avoid all the complex-
ity of datatypes?

Using MPI_BYTE prevents MPI from performing any data conversion 
(as discussed in last month’s article). Data padding and alignment issues, 
normally completely hidden from the user, must be taken into account. 
In C, this is generally not a problem because C programmers are used to 
dealing with padding issues. However, Fortran generally does a good job 
of handling padding and alignment behind the scenes. Using MPI_BYTE 
forces dangerous assumptions about the sizes of various datatypes.

 LISTING TWO

 Using Parts of a Structure
 
 1 struct vehicle {
 2   double position[3];
 3   double destination[3];
 4   double velocity[3];
 5   double fuel;
 6 }
 7 struct vehicle cars[10];
 8 MPI_Datatype tmp_car_type, car_type;
 9 int i, counts[2]={ 3, 3 };
10 MPI_Datatype types[2]={ MPI_DOUBLE, MPI_DOUBLE };
11 MPI_Aint disps[2];
12 MPI_Address(&cars[0].position, &disps[0]);
13 MPI_Address(&cars[0].velocity, &disps[1]);
14 disps[1] -= disps[0];
15 MPI_Type_struct(2, counts, disps, types, 
                   &tmp_car_type);
16 MPI_Type_create_resized(tmp_car_type, 0, 
                           sizeof(struct vehicle), 
                           &car_type);
16 MPI_Type_commit(&car_type);
...
17 MPI_Send(cars, 10, car_type, ...);
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field. If an array of tmp_car_type 
is sent, MPI will look for the start of 
the second structure directly after 
the last element of the velocity array 
(accounting for padding, of course). 
Instead of finding the first element 
of the position array for the second 
structure, it will find the fuel el-
ement from the first struct. MPI_
TYPE_CREATE_RESIZED provides 
the lower bound and extent of the 
datatype. 

Both terms will be discussed in 
the next section, but the extent in 
this example is the true size of the 
vehicle structure.

Lower Bounds, Upper 
Bounds, and Extents

e vehicle example introduced 
one of the most confusing parts of 
datatypes: bounds and extents. Ev-
ery datatype has a lower bound, up-
per bound, and extent. e lower 
bound is the offset from the start 
of the user buffer to the start of the 
first datatype entry for the buf-
fer. In the vehicle example above, if 
the fuel entry was first instead of 
last, MPI would need to know that 
it should skip over the fuel entry 
to find the destination entry. In 
this case, the lower bound would be 
sizeof(double). MPI_ADDRESS 
can be used to compute the lower 
bound, similar to how offsets be-
tween datatype entries are found. 
e lower bound can either be ad-
justed using MPI_TYPE_CREATE_
RESIZED or MPI_TYPE_LB .

e upper bound is end of the 
last element in a datatype, plus 
any required padding. In any array, 
the next entry begins directly af-
ter the upper bound of the current 
entry. e extent is the size of the 
datatype, or the upper bound mi-
nus the lower bound. 

Although the datatype’s upper 
bound can be set using MPI_TYPE_
UB , it is often much easier and less 

error-prone to set the extent using 
MPI_TYPE_CREATE_RESIZED.

One-off Datatypes

In each of the datatype examples 
presented thus far, an instance 
of a structure is used to deter-
mine addresses of each element 
in the datatype. e addresses are 
then used to determine offsets to 
use in the datatype. e resulting 
datatype can be used to describe 
any instance of the same structure. 
However, there are some instances 
where a “one-off” datatype is creat-
ed to describe a structure that will 
only exist once. In these cases, de-
termining addresses to find offsets, 
only to use the offsets to recompute 
the addresses is wasteful.

MPI provides the constant 
MPI_BOTTOM to for instances 
where computing offsets will be 
wasteful. 

MPI_Send(MPI_BOTTOM, 5, 
  custom_type,...)

e MPI will still have to do some 
offset math in order to find the el-
ements in the entire array. MPI_
BOTTOM can be tempting, as it saves 
a couple of lines of code. However, 
MPI_BOTTOM should generally be 
avoided. One of the advantages of 
datatypes is that they can be reused 
to avoid errors in user applications. 
If absolute addresses are used with 
MPI_BOTTOM , it is not possible to 
reuse the datatype in a generic way.

Resources
MPI Forum (including the MPI-
1 and MPI-2 specification docu-
ments): www.mpi-forum.org

NCSA MPI tutorial: 
webct.ncsa.uiuc.edu:8900/
public/MPI

Common Pitfalls 
and Misconceptions

One common misconception with 
MPI datatypes is that they are slow. 
Early in the life of MPI, using MPI 
datatypes to pack messages was of-
ten slower than packing the data by 
hand. Datatype performance has 
been and continues to be an active 
area of research, allowing datatype 
implementations to achieve much 
higher performance. Some MPI im-
plementations are even capable of 
doing scatter/gather sends and re-
ceives, completely eliminating the 
need to pack messages for transfer. 
In short, poor datatype performance 
is generally a thing of the past, and 
it’s getting better every day.

MPI provides a huge, often 
overwhelming, number of options 
when working with datatypes. Al-
though it is often tempting to use 
the predefined datatypes and avoid 
complexity, proper use of datatypes 
can reduce errors and improve 
performance. Using a complex 
datatype removes the problem of 
ensuring the correct order of sends 
and receives to move a structure 
piecemeal.

Where to Go From Here?

is column provides a number 
of examples of using datatypes to 
their full potential. e resourc-
es listed in the side bar present 
even more examples of utilizing 
datatypes to simplify applications. 
Next month, we will move on to 
any implementor’s favorite subject: 
common mistakes in using MPI and 
how to avoid them.

Brian Barrett is a parallel systems ana-
lyst at the Information Sciences Insti-
tute, University of Southern California 
and a developer on the LAM implemen-
tation of MPI. He can be reached at 
brbarret@lam-mpi.org


