
2 CLUSTERWORLD volume 2 no 7 3volume 2 no 7 CLUSTERWORLD

MPI Mechanic  

Parallel coding
Mysteries of MPI
Truly, life enow.

is, ladies and gentlemen, is what
happens when a classical education
collides with righteous code.

The Story So Far
So now you think you know MPI.
We’ve covered a lot of ground in this
column, including the MPI basics,
startup and shutdown, collective op-
erations, communicators and groups,
and we just spent two fantastic
months on datatypes (really, is there
anything better?). is month, we’ll
start my Top , All-Time Favorite
Evils To Avoid In Parallel. It’s so big
that it’ll take two months to cover.

Many of these are common mis-
takes that either befuddle users or
subtly cause performance degrada-
tion (and sometimes go unnoticed).
Some of them are easy to explain,
some are just due to how MPI im-
plementations are typically crafted
on the inside. Some have to do with
running MPI programs, others
have to do with writing them. It’s a
motley collection. From the home
office in Bloomington, Ind., let’s
start with No. ...

: Inconsistent
Environment/”Dot” Files
A common method of launching MPI
applications - particularly across
commodity Linux clusters - is with
rsh (or ssh). Most new users to MPI
simply invoke mpirun (or what-
ever startup command is relevant
to your MPI implementation) and
are surprised/dismayed/frustrated
when it tries to invoke rsh (or ssh)
behind the scenes and doesn’t work.
It doesn’t matter which shell you use

In Parallel, Everyone Hears You Scream
(they all work equally well with MPI),
you must set it up to work properly
with remote processes. e top two
reasons why rsh /ssh-based MPI ap-
plication startups fail are:

• e PATH environment variable is
not set properly in the user’s so-
called “dot” files (e.g., .tcshrc,
.profile , or .bashrc -- the spe-
cific file name depends on which
shell you are using). Specifically,
you may need to set the PATH in
your “dot” file to include the di-
rectory where your MPI instal-
lation is installed on the remote
nodes; it may not be sufficient to set
the PATH in the shell where you in-
voke mpirun .

• Remote authentication and/or
rsh /ssh is not setup proper-
ly. Error messages such as “Per-
mission denied” typically indi-
cate that the user has not setup
remote logins properly (e.g., a
.rhosts file or SSH keys). Error
messages such as “Connection re-
fused” usually mean that remote
logins using a specific protocol
are not enabled (e.g., trying to
use rsh in a cluster where only
ssh remote logins are enabled).

Both of these kinds of errors are
show-stoppers; you won’t be able
to run MPI programs until they
are solved. Usually a few Google
searches will find the right answer.
If all else fails, seek out your local
neighborhood system administra-
tor for advice.

 : Orphaning MPI Requests
When using non-blocking MPI com-
munication (i.e., you tell MPI to start
a communication), MPI gives you

back a request that you can use later
to find out if the communication
has completed. It is important to al-
ways poll MPI later and see if it has
completed. Not only is this neces-
sary so that you can know when you
re-use your message buffer, MPI al-
locates resources to track non-block-
ing communications that are not
released until the user application is
notified that it has completed.

e moral of the story: if you
start a non-blocking communication
and then never check the request for
completion, your application is leak-
ing resources. Always, always, always
remember to poll for completion of
non-blocking communications.

: MPI_PROBE
For a specific (tag, source rank, com-
municator) triple, the MPI_PROBE
function returns when a message
matching that triple is ready to be
received (a similar non-blocking
version is available as well: MPI_
IPROBE) and reports, among other
values, the size of the pending in-
coming message. MPI_PROBE is
commonly used to receive variable-
length messages — where the re-
ceiver does not know how large the
message is that will be received. For
example, post an MPI_PROBE and
then use the size that is returned to
allocate a buffer of the correct size
and then MPI_RECV into it.

Although convenient, MPI_
PROBE (and MPI_IPROBE) may actu-
ally force the MPI implementation
to allocate a temporary buffer and
fully receive the message into it be-
fore reporting its size. Hence, when
the matching receive is finally post-
ed, the MPI implementation simply
performs a memory copy to transfer
the message to the user’s buffer (and
then frees the temporary buffer).
is can add significant latency, par-

2 CLUSTERWORLD volume 2 no 7 3volume 2 no 7 CLUSTERWORLD

MPI Mechanic

ticularly for large messages or in low-
latency networking environments.

Avoid the use of MPI_PROBE
when possible. It may be more effi-
cient to actually send two messag-
es: first send a fixed-size message
that simply contains the size of the
second message, then immediately
follow it with the real message. is
method prevents the MPI imple-
mentation from needing to allocate
temporary buffers and perform un-
necessary memory copies.

: Mixing Fortran (and C++)
Compilers
is problem is not so much a prob-
lem with MPI as it is the state of com-
piler technology. Fortran compil-
ers may resolve global variables and
function names differently. For ex-
ample, the GNU Fortran  compiler
silently transforms the name to low-
er case and appends two underscores
to all global variable and function
names. is is in contrast to, for ex-
ample, the Solaris Forte Fortran com-
piler only adds one underscore. It is
possible that an MPI implementation
was configured for a specific Fortran
compiler’s resolution scheme. Hence,
functions such as MPI_INIT may ac-
tually be exist as mpi_init__.

As a direct result, your MPI im-
plementation may be configured to
only work with a single Fortran com-
piler (which is only relevant if you are
writing Fortran MPI programs). At-
tempting to use a different Fortran
compiler may result in “Unresolved
symbol” kinds of errors when at-
tempting to link MPI executables.

To fix this, either only use the
Fortran compiler that your MPI in-
stallation was configured with, or
re-configure/re-install your MPI
with the Fortran compiler that you
want to use. e issue is almost
identical for C++ compilers (simi-
larly, this is only relevant if you are
writing C++ MPI programs that use
the C++ MPI bindings).

 : Blaming MPI for
Programmer Errors
A natural tendency when an appli-
cation breaks is to blame the MPI
implementation, particularly when
your application “works” with one
MPI implementation and (for exam-
ple) seg faults in another. While no
MPI implementation is perfect, they
do typically go through heavy test-
ing before release. It is quite possible
(and likely) that your application ac-
tually has a latent bug that is simply
not tripped on some architectures/
MPI implementations.

is sounds arrogant (especially
coming from an MPI implementer),
but the vast majority of “bug reports”
that we receive are actually due to
errors in the user’s application (and
sometimes they are very subtle er-
rors). For example, some compilers
initialize variables to default values
(such as zero). Others do not. If your
code accidentally depends on a vari-
able having a default value, it may

work fine under some platforms or
compilers, yet cause errors on others.

Before submitting a bug re-
port to the maintainers, double
and triple check your application.
Use a memory-checking debugger,
such as the Linux Valgrind package,
the Solaris bcheck command-line
checker, or the Purify system. All of
these debuggers will report on the
memory usage in your application,
including buffer overflows, reading
from uninitialized memory, and
so on. You’d be surprised what will
turn up in your application.

Where to Go From Here?
So what did we learn here?

10 Ensure your environment is set
up correctly. You only need to do
this once.

9 Always check non-blocking com-
munication for completion. Don’t
leak resources.

8 Avoid MPI_PROBE and MPI_
IPROBE ; they’re evil.

7 Ensure that you are using the
right compilers.

6 Don’t blame MPI for your errors.
Use memory-checking debuggers.

If anything, realize that you are not
alone if you run into MPI problems.
e problems discussed this month
are all relatively easy to fix. So even
if you can’t get your MPI application
to run, don’t despair. e solution is
probably just a few Google searches
or a system administrator away.

Stay tuned: next month, we’ll
continue with my Top  All-Time
Favorite Evils to Avoid in Parallel.

Jeff Squyres is a research associate at In-
diana University and is the lead developer
for the LAM implementation of MPI.
Contact him at jsquyres@lam-mpi.org.

Resources
Valgrind project
• valgrind.kde.org
MPI Forum
• www.mpi-forum.org
NCSA MPI tutorial
• webct.ncsa.uiuc.edu:8900/

public/MPI

MPI — The Complete Refer-
ence: Volume 1, The MPI Core
(2nd ed) (The MIT Press) by
Marc Snir, Steve Otto, Steven
Huss-Lederman, David Walker,
and Jack Dongarra.

MPI — The Complete Refer-
ence: Volume 2, The MPI Ex-
tensions (The MIT Press) by
William Gropp, Steven Huss-
Lederman, Andrew Lumsdaine,
Ewing Lusk, Bill Nitzberg, Wil-
liam Saphir, and Marc Snir.

