
2 CLUSTERWORLD volume 2 no 8 3volume 2 no 8 CLUSTERWORLD

MPI Mechanic  

A guy walks into a breakfast joint
with  penguins. ey sit down at
the biggest table in the place. e guy
orders coffee for himself and a bowl
of cereal for each of the penguins.
He then breaks out a newspaper and
casually starts reading. Meanwhile,
the penguins’ breakfasts arrive and
the first penguin starts eating while
all the others look at him. After he
finishes, all the penguins look at the
second penguin while he eats. When
the last penguin finishes his cereal,
he emits a loud “gwank!” and all the
penguins get up and file out of the
restaurant.

e guy looks up, folds up his
newspaper, and gets up to pay the
bill. One of the other patrons had
been watching the spectacle said,
“Excuse me sir, I have to ask. What
was that all about? Why did you just
sit there while your penguins ate
their breakfast?”

“Yeah, it always takes this long,”
he said. “It’s cerealized.”

The Story So Far
Last month, we started my Top-,
All-Time Favorite Evils to Avoid in
Parallel. As promised, it’s so big that
it takes two months to cover. We
covered the first five last month:

10 Inconsistent environment/“dot”
files

9 Orphaning MPI requests

8 MPI_PROBE

7 Mixing Fortran (and C++) compilers

6 Blaming MPI for programmer
errors

So without further ado, from the

In Parallel, Everyone Hears You Scream II
home office in Bloomington, Ind.,
let’s continue with No. ...

: Re-Using a Buffer
Prematurely
Recall that MPI’s message passing
behavior is mostly defined through
buffer semantics. Specifically, the
MPI standard makes it clear that a
buffer can only be used in one com-
munication at a time. It is erroneous
to use the same buffer in multiple,
ongoing communications.

A common error is for MPI pro-
grams to start a non-blocking com-
munication to or from a buffer and
then start a second one with the
same buffer before the first com-
pletes. ere are two common cases:
concurrent reading and writing, and
multiple concurrent reads.

Simultaneous reading and writ-
ing to the same buffer is clearly a
race condition. For example, if both a
non-blocking send and a non-block-
ing receive are simultaneously post-
ed to the same buffer, there is no
guarantee in which order they will
complete. Indeed, it may be impos-
sible to know exactly what is sent be-
cause it will depend on exactly when
the incoming message was received
vs. when the outgoing message was
actually able to be sent.

Multiple concurrent readers is
frequently seen as harmless (i.e.,
sending from the same buffer);
surely multiple readers can’t cause
a problem for the MPI implementa-
tion, can it?

Probably not.
But MPI still says that it’s illegal,

and it may cause problems — even
if the sends all complete normally.
e rationale here is that the MPI
implementation may do something
with “special” memory in order to

maximize performance. For exam-
ple, networks based on OS-bypass
mechanisms may require the use of
“pinned” memory — memory that
the operating system is disallowed
from swapping out. is require-
ment allows the OS-bypass-capable
NIC to find the memory and be guar-
anteed that it doesn’t move while the
network transfer takes place.

An MPI implementation typi-
cally has to maintain some kind of
state to keep track of pinned memo-
ry. While such techniques usually in-
volve reference counting - the mem-
ory is not “un-pinned” by the MPI
implementation until all communi-
cations involving it have completed
- it is conceivable that an MPI imple-
mentation will not reference count
or otherwise perform error checking
in order to decrease overhead (and
therefore decrease latency). is
process can result in the premature
“un-pinning” of memory while other
communications are still ongoing,
leading to run-time errors or other
unpredictable behavior.

: Mixing MPI
Implementations
It is not uncommon for someone to
ask me a question about LA-MPI,
FT-MPI, MPICH, or one of several
other MPI implementations. I al-
ways politely reply that I work on
LAM/MPI, and can’t really answer
questions about those implemen-
tations. is situation is typically
more amusing to me than anything
else, but it underscores the issue
that many users frequently do not
distinguish between different MPI
implementations.

is misconception unfortunately
spills over to the technology as well;
users compile their application with
one implementation, try to run it
with another, and are confused when

2 CLUSTERWORLD volume 2 no 8 3volume 2 no 8 CLUSTERWORLD

MPI Mechanic

it does not work. Or, worse, they run
their application on multiple ma-
chines, each with a different imple-
mentation installed (this is similar
to but slightly different from point
: inconsistent environment/”dot”
files). is situation is almost guaran-
teed not to work.

Additionally, some users as-
sume that the mpi.h and mpif.h
header files are interchangeable
between MPI implementations (or
do not make the distinction). ey
are not; indeed, the differences in
these files are among the top-level
reasons that MPI implementations
are incompatible with each other
(e.g., types, constants, and macros
will likely have conflicting values in
different implementations). Even
worse, an MPI application may com-
pile properly with the wrong mpi.h
file, but then fail at run time in
strange and mysterious ways.

e most common way to avoid
this problem is to use the MPI im-
plementation’s “wrapper” compil-
ers for compiling and linking ap-
plications. Most (but not all) MPI
implementations provide com-
mands such as mpicc and mpif77
to compile C and Fortran  pro-
grams, respectively. ese com-
mands do nothing other than
add relevant command line argu-
ments before invoking an under-
lying compiler. ey are typically
the easiest way to ensure that the
“right” mpi.h and MPI library are
used when compiling and linking.

: MPI_ANY_SOURCE
e use of MPI_ANY_SOURCE is con-
venient for programmers; it is not
uncommon for a message with the
same signature to be able to arrive
from multiple sources. However, de-
pending on the underlying network
and the MPI implementation, this
may force extra overhead upon re-
ceipt of the message. For example,
the MPI implementation may be

required to associate the receive re-
quest with all possible communica-
tion devices (which may entail spin-
ning on polling all devices). When a
matching message arrives, the MPI
implementation must disassociate
the request from all other devic-
es. Not only does this cause extra
latency simply by necessitating N
actions, it may involve costly lock-
ing and unlocking mechanisms in
multi-threaded programs.

When possible, try to avoid us-
ing MPI_ANY_SOURCE . Instead, it
may be better to post N non-block-
ing receives - one for each source
from where the message may be
received. is arrangement allows
the MPI to check only the relevant
communication devices. Functions
such as MPI_WAITANY and MPI_
TESTANY can be used to determine
when a message arrives. is situ-
ation is, of course, a trade-off — if
you have a message that legiti-
mately may arrive from any peer
process, then MPI_ANY_SOURCE
may actually be more efficient than
posting N receives. Other factors
also become relevant, such as the

frequency of messages from each
peer (including strategies to avoid
unexpected messages) — it de-
pends on the application.

: Serialization
May users are nervous about using
MPI’s various modes of non-block-
ing communications and instead
simply use MPI_SEND and MPI_
RECV. is habit can lead to perfor-
mance degradation by unknowing-
ly serializing parallel applications.
Processes blocked in MPI_SEND or
MPI_RECV may be wasting valuable
CPU cycles while simply waiting for
communication with peer process-
es. is situation can even lead to
a domino-like effect where a series
of processes are waiting for each
other and progress only occurs in

 LISTING ONE
 Pseudocode of Communication and Computation Overlap

1. buffer_comm = A;
2. buffer_work = B;
3. for (...) {
4. /* Send the communication buffer */
5. MPI_Isend(buffer_comm, ..., &req);
6.
7. /* Do useful work on the other buffer */
8. do_work(buffer_work);
9.
10. /* Finish the communication */
11. MPI_Wait(&req, &status);
12.
13. /* Swap the buffers */
14. buffer_tmp = buffer_comm;
15. buffer_comm = buffer_work;
16. buffer_work = buffer_tmp;
17. }

The real moral of the story
is to understand your
application and the
run-time environment of
the MPI implementation
that you’re using

4 CLUSTERWORLD volume 2 no 8

a peer-by-peer fashion — just like
the penguins in the beginning of
this article.

is behavior can almost al-
ways be fixed in the application.
While some algorithms simply can-
not avoid this problem, most can
be re-factored to allow a true over-
lap of computation and communi-
cation. Specifically: allow the MPI
to perform message passing “in the
background” while the user appli-
cation is performing useful work.
A common technique is to use mul-
tiple pairs of buffers, swapping be-
tween them on successive itera-
tions. For example, in iteration N,
initiate communication using buf-
fer A and perform useful local work
on buffer B. In iteration N+, swap
the buffers: communicate with buf-
fer B and work on buffer A. See the
pseudocode in Listing One for an
example.

And the No. , All-Time Favorite
Evil to Avoid in Parallel is...

: Assuming MPI_SEND
Will [Not] Block
In the February  edition of this
column, I included a sidebar enti-
tled “To Block or Not To Block” de-
scribing typical user confusion as
to whether MPI_SEND is supposed
block or not. It still remains a popu-
lar question, frequently asked in
multiple forms:

• “My application blocks in MPI_
SEND — but only sometimes.
Why?”

• “Why does my application work
fine with Foo MPI, but deadlock
in Bar MPI?”

• “When MPI_SEND returns, has
the destination received the mes-
sage?”

MPI_SEND and MPI_RECV are
called “blocking” by the MPI-

standard, but they may or may not
actually block. Whether or not an
unmatched send will block typi-
cally depends on how much buffer-
ing the implementation provides.
For example, short messages are
usually sent “eagerly” — regardless
of whether a matching receive has
been posted or not.

Long messages may be sent
with a rendezvous protocol, mean-
ing that it will not actually com-
plete until the target has initiated a
matching receive.

is behavior is legal because
the semantics of MPI_SEND do not
actually define whether message
has been sent when it returns. e
only guarantee that MPI makes is
that the buffer is able to be re-used
when MPI_SEND returns.

Receives, by their definition,
will not return until a match-
ing message has actually been re-
ceived. If a matching short message
was previously eagerly sent then it

may be received “immediately” for
example.

is case is called an “unexpect-
ed” message, and MPI implementa-
tions typically provide some level of
implicit buffering for this condition:
eagerly sent, unmatched messages
are simply stored in internal buff-
ering at the target until a matching
receive is posted by the application.
A local memory copy is all that is
necessary to complete the receive.

Note that it is also legal for an
MPI implementation to provide
zero buffering — to effectively dis-
allow unexpected messages and
block MPI_SEND until a matching
receive is posted (regardless of the
size of the message).

MPI applications that assume
at least some level of underly-
ing buffering are not conformant
(i.e., applications that assume that
MPI_SEND will or will not block),
and may run to completion under
one MPI implementation but block
in another.

 Where to Go From Here?
ere you have it — my canonical
list of things to avoid while pro-
gramming in parallel. Note that
even though this is my favorite
list, your mileage may vary — ev-
ery parallel application is different.
e real moral of the story here is to
thoroughly understand both your
application and the run-time envi-
ronment of the MPI implementa-
tion that you’re using. is under-
standing is the best way to obtain
the best performance.

Next month, we’ll launch into
the nitty-gritty details of non-
blocking communication. Stay
tuned!

Jeff Squyres is a post-doctoral research
associate at Indiana University and is the
lead developer for the LAM implementa-
tion of MPI. Reach him at jsquyres@lam-
mpi.org.

Resources
MPI Forum (including the MPI-1
and MPI-2 specification docu-
ments): www.mpi-forum.org

MPI — The Complete Refer-
ence: Volume 1, The MPI Core
(2nd ed) (The MIT Press) by
Marc Snir, Steve Otto, Steven
Huss-Lederman, David Walker,
and Jack Dongarra.

MPI — The Complete Refer-
ence: Volume 2, The MPI Exten-
sions (The MIT Press) by William
Gropp, Steven Huss-Lederman,
Andrew Lumsdaine, Ewing Lusk,
Bill Nitzberg, William Saphir, and
Marc Snir.

NCSA MPI tutorial
webct.ncsa.uiuc.edu:8900/
public/MPI

MPI Mechanic

