
2 CLUSTERWORLD volume 2 no 10 3volume 2 no 10 CLUSTERWORLD

MPI Mechanic  

Halloween is coming up soon. at
means scary masks and sugar can-
dy: a combination sure to elicit an
explosive response in even the most
demure children. Hmm. Interesting
concept: add a little something to a
pre-existing entity and get higher
output performance...

The Story So Far
Last month we started discuss-
ing non-blocking communication
(get it?). We covered the basic non-
blocking (or immediate) send and re-
ceive functions — all of which start
a communication — and touched
on their various flavors. We also
discussed the TEST and WAIT func-
tions, and how they are used to com-
plete communications.

Recall that previous articles have
only covered standard communica-
tion (sometimes called “blocking”
communication, even though the
functions may not always block!):
functions that will not return until
MPI guarantees that the buffer can
be [re]-used. Using non-blocking
communications effectively allows
the separation of communication
initiation and completion, and al-
lows for the possibility of communi-
cation and computation overlap.

is month, we’ll talk more about
non-blocking methods and benefits,
and fuel the fire with some more ex-
amples about how and why they can
be useful to your MPI application.
And remember, latency is like a good
speech; the shorter, the better.

Persistent Sends and
Receives
Another form of non-blocking com-
munication is MPI’s persistent mes-
sages. Persistent communication
offers a slight optimization to ap-

More Joys of Asynchronous Communication
plications that repeatedly send or
receive a buffer with the same mes-
sage signature. In such cases, the
use of persistent communication
can reduce overall latency.

 e rationale is to pass all the ar-
guments (buffer, count, datatype, tag,
source/destination, and communica-
tor) and perform the setup required
for the communication only once.
en, in each iteration of the applica-
tion, simply say “go” on the previously
set-up operation and let the commu-
nication commence. For example:

1 MPI_Status status;

2 MPI_Request req;

3 MPI_Send_init(buf, count,

 dtype, dest,

 tag, comm, &req);

4 while (looping) {

5 MPI_Start(&req);

6 do_work();

7 MPI_Wait(&req, &status);

8 }

9 MPI_Cancel(&req);

e MPI_SEND_INIT function cre-
ates a request and sets up the com-
munication. Its signature is identi-
cal to MPI_ISEND (all the normal
sending parameters and the address
of an MPI_Request to fill). e
MPI_START function actually starts
the communication operation. e
send is a non-blocking operation and
therefore must be finished with a
TEST or WAIT operation. During the
next iteration, there is no need to in-
voke MPI_SEND_INIT again — we
simply START and WAIT the request.
After the loop has completed, it is
proper to MPI_CANCEL a persistent
request. is command tells MPI
that the application will not use that
request again — it is safe to destroy
and free all associated resources.

MPI_SEND_INIT is a standard
mode persistent send; MPI_SSEND_
INIT, MPI_BSEND_INIT, and MPI_
RSEND_INIT are the synchronous,
buffered, and ready mode persistent
functions, respectively. MPI_RECV_
INIT is the persistent receive. ey
all function similarly to MPI_SEND_
INIT : use the INIT function to create
the request, use the START function
to initiate the communication, and fi-
nally use some flavor of TEST or WAIT
to complete it. Also note that just like
the TEST and WAIT functions, START
has a variant that can operate on an
array of requests: MPI_STARTALL.

Why Bother With Non-
Blocking?
Invoking special functions and cre-
ating additional logic for splitting
the initiation and completion of
communications can be quite a has-
sle. Why bother?

For example, a communication
co-processor, separate from the main
CPU, can process message-passing
events independently of the operat-
ing system and user’s application.
A coprocessor allows even single-
threaded MPI implementations to
perform some communication asyn-
chronously, while the application is
executing outside the MPI library. e
network itself takes responsibility for
some portion of MPI semantics. Ad-
ditionally, standard mode functions
allow only one communication to
occur at a time. Non-blocking func-
tions allow the application to initiate
multiple communication operations,
enabling the MPI implementation to
progress them simultaneously. Con-
sider the following code example:

1 while (looping) {

2 if (i_have_a_left_neighbor)

2 CLUSTERWORLD volume 2 no 10 3volume 2 no 10 CLUSTERWORLD

MPI Mechanic

3 MPI_Recv(inbuf, count,

 dtype, left,

 tag, comm,

 &status);

4 if (i_have_a_right_neighbor)

5 MPI_Send(outbuf, count,

 dtype, right,

 tag, comm);

6 do_other_work();

7 }

Assume at that least one process does
not have a left neighbor, and consid-
er how this code will run in parallel:
every process will receive from its left
and then send to its right. But notice
that the above code uses standard
mode sends. As a direct result, this
algorithm is actually serialized — it
will execute in a domino-like fashion,
causing each process to block while
waiting for its left neighbor.

Using non-blocking communica-
tion allows the MPI to progress both
communications simultaneously:

1 while (looping) {

2 count = 0;

3 if (i_have_a_left_neighbor)

4 MPI_Irecv(inbuf, count,

 dtype, left,

 tag, comm,

 &req[count++]);

5 if (i_have_a_right_neighbor)

6 MPI_Isend(outbuf, count,

 dtype, right,

 tag, comm,

 &req[count++]);

7 MPI_Waitall(count, req,

 &statuses);

8 do_other_work();

9 }

e MPI_WAITALL on line  allows
both communications to progress si-
multaneously. Specifically, the send
can proceed before the receive com-
pletes. is code will therefore oper-
ate in a truly parallel fashion and will
avoid the domino effect. Note, how-
ever, that this particular code example
has a subtle implication: the WAITALL

will block until both communications
are complete. Indeed, the astute reader
will recognize that a clever use of MPI_
SENDRECV could be used for the same
result. Specifically, blocking on line
 means that there still may be some
“dead” time while waiting for network
communication to complete — time
that could have been used for other
work. is situation may be unavoid-
able in some applications, but others
may have some work that can be per-
formed while waiting for the commu-
nications to complete. For example:

1 while (looping) {

2 count = 0;

3 if (i_have_a_left_neighbor)

4 MPI_Irecv(inbuf, count,

 dtype, left,

 tag, comm,

 &req[count++]);

5 if (i_have_a_right_neighbor)

6 MPI_Isend(outbuf, count,

 dtype, right,

 tag, comm,

 &req[count++]);

7 do_some_work();

8 MPI_Waitall(count, req,

 &statuses);

9 do_rest_of_work();

10 }

Note the addition of do_some_
work() and do_rest_of_work()
on lines  and , respectively. do_
some_work() represents work that
can be done before the communica-
tion completes. Hence, the appli-
cation can even utilize the “dead”
time while message passing is oc-
curring in the background — an
overlap of communication and com-
putation. is method works best
on networks and/or MPI implemen-
tations that allow for at least some
degree of asynchronous progress,
but can even benefit single-thread-
ed, synchronous MPI implemen-
tations. Once the communication
completes, do_rest_of_work()
executes, and one assumes it is per-
forming work that was dependent
upon the received messages.

Note that since the same buf-
fers and communication param-
eters are used in every iteration, a
further optimization could use the
persistent mode. is improvement
allows the MPI to setup the commu-
nications once, and simply say “go”
every iteration:

1 int count = 0;

Pre-Posting Receives

Just because an operation is non-blocking does not mean that it is some-
how automatically more efficient than if it were blocking. Indeed, many

of the same best practices that apply to blocking communication also ap-
ply to non-blocking communication. One such best practice judiciously
pre-posting non-blocking receives. This method potentially helps an MPI
implementation reduce the use of temporary buffers.

For example, if a message is received in an MPI process that is unexpect-
ed — meaning that the application did not [yet] post a corresponding re-
ceive — the MPI implementation may have to allocate a temporary buffer
to receive it. If a matching receive is ever posted, the MPI implementation
copies the message from the temporary buffer into the destination buffer.

However, if a non-blocking receive is posted before the message is re-
ceived, once the message arrives, it is expected and can be received direct-
ly into the target buffer. No temporary buffer needs to be allocated and no
extra memory copy is necessary. Hence, ensuring to pre-posting receives
can increase the efficiency of an MPI application.

4 CLUSTERWORLD volume 2 no 10

2 if (i_have_a_left_neighbor)

3 MPI_Recv_init(inbuf, count,

 dtype, left,

 tag, comm,

 &req[count++]);

4 if (i_have_a_right_neighbor)

5 MPI_Send_init(outbuf, count,

 dtype, right,

 tag, comm,

 &req[count++]);

6 while (looping) {

7 MPI_Startall(count, req);

8 do_some_work();

9 MPI_Waitall(count, req,

 &statuses);

10 do_rest_of_work();

11 }

All production-quality MPI imple-
mentations can handle simultane-
ous progress of multiple requests,
even those that do not allow true
asynchronous progress. Hence, even
if polling (via TEST operations) is
required, non-blocking communica-
tion programming models can still
represent a large performance gain
as compared to standard/blocking
mode communication.

MPI-: Multiple Types
of Requests
MPI- defines two new types of op-
erations that can be started and
completed using MPI_Request
handles: parallel I/O and user-mode
“generalized” requests. Although
those operations are the topics for
future columns, suffice it to say that
both of them follow the same gener-
al model as non-blocking point-to-
point communication: actions are
started with calls to MPI functions
that generate requests and are com-
pleted with calls to TEST or WAIT
operations.

A subtle implication is that the
array-based TEST and WAIT func-
tions can accept multiple MPI_Re-
quest handles regardless of the type
of pending operation that they repre-
sent. Hence, it is possible to create an

array of requests that encompasses
both point to point and I/O commu-
nications, and have MPI_WAITALL
wait for the completion of all of them.

Where to Go From Here?
Non-blocking communications,
when used properly, can provide a
tremendous performance boost to
parallel applications. In addition to
allowing the MPI to perform at least
some form of asynchronous prog-
ress (particularly when used with
communication co-processor-based
networks), it allows the MPI to
progress multiple communication
operations simultaneously.

Got any MPI questions you want
answered? Wondering why one MPI
does this and another does that?
Send them to jsquyres@lam-mpi.org.

Jeff Squyres is a post-doctoral research
associate at Indiana University and is
the lead developer for the LAM imple-
mentation of MPI. He can be reached at
jsquyres@lam-mpi.org

Resources
ROMIO: A High-Performance,
Portable MPI-IO Implementa-
tion: www.mcs.anl.gov/romio

MPI Forum (including the MPI-1
and MPI-2 specification docu-
ments): www.mpi-forum.org

MPI — The Complete Refer-
ence: Volume 1, The MPI Core
by Marc Snir, Steve Otto, Steven
Huss-Lederman, David Walker,
and Jack Dongarra.

MPI — The Complete Refer-
ence: Volume 2, The MPI Exten-
sions by William Gropp, Steven
Huss-Lederman, Andrew Lums-
daine, Ewing Lusk, Bill Nitzberg,
William Saphir, and Marc Snir.

NCSA MPI tutorial
webct.ncsa.uiuc.edu:8900/
public/MPI

MPI Mechanic

ROMIO: A Popular MPI-2 I/O Implementation

ROMIO is a popular implementation of many of the MPI-2 I/O func-
tion calls from Argonne National Laboratory (e.g., MPI_FILE_OPEN ,

MPI_FILE_READ , etc.). ROMIO’s implementation is layered on top of
MPI-1 point-to-point communication; it is specifically designed as an add-
on to existing MPI implementations (such as LAM/MPI, LA-MPI, FT-MPI,
and MPICH, to name a few). This layering creates problems because ROMIO
cannot re-define the underlying type MPI_Request since it has already
been defined by the underlying MPI implementation. Moreover, the back-
end of MPI_Request is different in every MPI implementation; ROMIO
can’t extend it in a portable way.

ROMIO’s solution was to create a new type: MPIO_Request . All MPI_
FILE* functions that are supposed to take an MPI_Request as a param-
eter instead take an MPIO_Request . This situation means that ROMIO
technically does not conform to the MPI-2 standard, but this detail is usu-
ally overlooked for the sake of portability and functionality.

There is a notable side effect, however. Since MPI_TEST and MPI_WAIT
(and their variants) take MPI_Request arguments, they cannot accept RO-
MIO MPIO_Requests . Hence, ROMIO implements its own MPIO_TEST
and MPIO_WAIT functions. As such, MPI implementations that use ROMIO
generally do not support invoking the various TEST and WAIT functions with
arrays of point-to-point and I/O requests

