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Halloween is coming up soon. at 
means scary masks and sugar can-
dy: a combination sure to elicit an 
explosive response in even the most 
demure children. Hmm. Interesting 
concept: add a little something to a 
pre-existing entity and get higher 
output performance...

The Story So Far
Last month we started discuss-
ing non-blocking communication 
(get it?). We covered the basic non-
blocking (or immediate) send and re-
ceive functions — all of which start 
a communication — and touched 
on their various flavors. We also 
discussed the TEST and WAIT func-
tions, and how they are used to com-
plete communications.

Recall that previous articles have 
only covered standard communica-
tion (sometimes called “blocking” 
communication, even though the 
functions may not always block!): 
functions that will not return until 
MPI guarantees that the buffer can 
be [re]-used. Using non-blocking 
communications effectively allows 
the separation of communication 
initiation and completion, and al-
lows for the possibility of communi-
cation and computation overlap.

is month, we’ll talk more about 
non-blocking methods and benefits, 
and fuel the fire with some more ex-
amples about how and why they can 
be useful to your MPI application. 
And remember, latency is like a good 
speech; the shorter, the better.

Persistent Sends and 
Receives
Another form of non-blocking com-
munication is MPI’s persistent mes-
sages. Persistent communication 
offers a slight optimization to ap-

More Joys of Asynchronous Communication
plications that repeatedly send or 
receive a buffer with the same mes-
sage signature. In such cases, the 
use of persistent communication 
can reduce overall latency.

 e rationale is to pass all the ar-
guments (buffer, count, datatype, tag, 
source/destination, and communica-
tor) and perform the setup required 
for the communication only once. 
en, in each iteration of the applica-
tion, simply say “go” on the previously 
set-up operation and let the commu-
nication commence. For example:

1 MPI_Status status;

2 MPI_Request req;

3 MPI_Send_init(buf, count, 

               dtype, dest, 

               tag, comm, &req);

4 while (looping) {

5  MPI_Start(&req);

6  do_work();

7  MPI_Wait(&req, &status);

8 }

9 MPI_Cancel(&req);

e MPI_SEND_INIT function cre-
ates a request and sets up the com-
munication. Its signature is identi-
cal to MPI_ISEND (all the normal 
sending parameters and the address 
of an MPI_Request to fill). e 
MPI_START function actually starts 
the communication operation. e 
send is a non-blocking operation and 
therefore must be finished with a 
TEST or WAIT operation. During the 
next iteration, there is no need to in-
voke MPI_SEND_INIT again — we 
simply START and WAIT the request. 
After the loop has completed, it is 
proper to MPI_CANCEL a persistent 
request. is command tells MPI 
that the application will not use that 
request again — it is safe to destroy 
and free all associated resources.

MPI_SEND_INIT is a standard 
mode persistent send; MPI_SSEND_
INIT, MPI_BSEND_INIT, and MPI_
RSEND_INIT are the synchronous, 
buffered, and ready mode persistent 
functions, respectively. MPI_RECV_
INIT is the persistent receive. ey 
all function similarly to MPI_SEND_
INIT : use the INIT function to create 
the request, use the START function 
to initiate the communication, and fi-
nally use some flavor of TEST or WAIT 
to complete it. Also note that just like 
the TEST and WAIT functions, START 
has a variant that can operate on an 
array of requests: MPI_STARTALL.

Why Bother With Non-
Blocking?
Invoking special functions and cre-
ating additional logic for splitting 
the initiation and completion of 
communications can be quite a has-
sle. Why bother?

For example, a communication 
co-processor, separate from the main 
CPU, can process message-passing 
events independently of the operat-
ing system and user’s application. 
A coprocessor allows even single-
threaded MPI implementations to 
perform some communication asyn-
chronously, while the application is 
executing outside the MPI library. e 
network itself takes responsibility for 
some portion of MPI semantics. Ad-
ditionally, standard mode functions 
allow only one communication to 
occur at a time. Non-blocking func-
tions allow the application to initiate 
multiple communication operations, 
enabling the MPI implementation to 
progress them simultaneously. Con-
sider the following code example:

1 while (looping) {

2  if (i_have_a_left_neighbor)
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3   MPI_Recv(inbuf, count, 

             dtype, left, 

             tag, comm, 

              &status);

4  if (i_have_a_right_neighbor)

5   MPI_Send(outbuf, count, 

             dtype, right, 

             tag, comm);

6  do_other_work();

7 }

Assume at that least one process does 
not have a left neighbor, and consid-
er how this code will run in parallel: 
every process will receive from its left 
and then send to its right. But notice 
that the above code uses standard 
mode sends. As a direct result, this 
algorithm is actually serialized — it 
will execute in a domino-like fashion, 
causing each process to block while 
waiting for its left neighbor. 

Using non-blocking communica-
tion allows the MPI to progress both 
communications simultaneously:

1 while (looping) {

2  count = 0;

3  if (i_have_a_left_neighbor)

4    MPI_Irecv(inbuf, count, 

               dtype, left, 

               tag, comm, 

               &req[count++]);

5  if (i_have_a_right_neighbor)

6    MPI_Isend(outbuf, count, 

               dtype, right, 

               tag, comm, 

               &req[count++]); 

7  MPI_Waitall(count, req, 

   &statuses);

8  do_other_work();

9 }

e MPI_WAITALL on line  allows 
both communications to progress si-
multaneously. Specifically, the send 
can proceed before the receive com-
pletes. is code will therefore oper-
ate in a truly parallel fashion and will 
avoid the domino effect. Note, how-
ever, that this particular code example 
has a subtle implication: the WAITALL 

will block until both communications 
are complete. Indeed, the astute reader 
will recognize that a clever use of MPI_
SENDRECV could be used for the same 
result. Specifically, blocking on line 
 means that there still may be some 
“dead” time while waiting for network 
communication to complete — time 
that could have been used for other 
work. is situation may be unavoid-
able in some applications, but others 
may have some work that can be per-
formed while waiting for the commu-
nications to complete. For example:

1 while (looping) {

2  count = 0;

3  if (i_have_a_left_neighbor)

4    MPI_Irecv(inbuf, count, 

               dtype, left, 

               tag, comm, 

               &req[count++]);

5  if (i_have_a_right_neighbor)

6    MPI_Isend(outbuf, count, 

               dtype, right, 

               tag, comm, 

               &req[count++]); 

7  do_some_work();

8  MPI_Waitall(count, req, 

   &statuses);

9  do_rest_of_work();

10 }

Note the addition of do_some_
work() and do_rest_of_work() 
on lines  and , respectively. do_
some_work() represents work that 
can be done before the communica-
tion completes. Hence, the appli-
cation can even utilize the “dead” 
time while message passing is oc-
curring in the background — an 
overlap of communication and com-
putation. is method works best 
on networks and/or MPI implemen-
tations that allow for at least some 
degree of asynchronous progress, 
but can even benefit single-thread-
ed, synchronous MPI implemen-
tations. Once the communication 
completes, do_rest_of_work() 
executes, and one assumes it is per-
forming work that was dependent 
upon the received messages.

Note that since the same buf-
fers and communication param-
eters are used in every iteration, a 
further optimization could use the 
persistent mode. is improvement 
allows the MPI to setup the commu-
nications once, and simply say “go” 
every iteration:

1 int count = 0;

Pre-Posting Receives

Just because an operation is non-blocking does not mean that it is some-
how automatically more efficient than if it were blocking. Indeed, many 

of the same best practices that apply to blocking communication also ap-
ply to non-blocking communication. One such best practice judiciously 
pre-posting non-blocking receives. This method potentially helps an MPI 
implementation reduce the use of temporary buffers.

For example, if a message is received in an MPI process that is unexpect-
ed — meaning that the application did not [yet] post a corresponding re-
ceive — the MPI implementation may have to allocate a temporary buffer 
to receive it. If a matching receive is ever posted, the MPI implementation 
copies the message from the temporary buffer into the destination buffer.

However, if a non-blocking receive is posted before the message is re-
ceived, once the message arrives, it is expected and can be received direct-
ly into the target buffer. No temporary buffer needs to be allocated and no 
extra memory copy is necessary. Hence, ensuring to pre-posting receives 
can increase the efficiency of an MPI application.
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2 if (i_have_a_left_neighbor)

3   MPI_Recv_init(inbuf, count, 

                 dtype, left, 

                 tag, comm, 

                 &req[count++]);

4 if (i_have_a_right_neighbor)

5   MPI_Send_init(outbuf, count, 

                 dtype, right, 

                 tag, comm, 

                 &req[count++]);

6 while (looping) {

7   MPI_Startall(count, req);

8   do_some_work();

9   MPI_Waitall(count, req, 

                &statuses);

10  do_rest_of_work();

11 }

All production-quality MPI imple-
mentations can handle simultane-
ous progress of multiple requests, 
even those that do not allow true 
asynchronous progress. Hence, even 
if polling (via TEST operations) is 
required, non-blocking communica-
tion programming models can still 
represent a large performance gain 
as compared to standard/blocking 
mode communication.

MPI-: Multiple Types 
of Requests
MPI- defines two new types of op-
erations that can be started and 
completed using MPI_Request 
handles: parallel I/O and user-mode 
“generalized” requests. Although 
those operations are the topics for 
future columns, suffice it to say that 
both of them follow the same gener-
al model as non-blocking point-to-
point communication: actions are 
started with calls to MPI functions 
that generate requests and are com-
pleted with calls to TEST or WAIT 
operations.

A subtle implication is that the 
array-based TEST and WAIT func-
tions can accept multiple MPI_Re-
quest handles regardless of the type 
of pending operation that they repre-
sent. Hence, it is possible to create an 

array of requests that encompasses 
both point to point and I/O commu-
nications, and have MPI_WAITALL 
wait for the completion of all of them.

Where to Go From Here?
Non-blocking communications, 
when used properly, can provide a 
tremendous performance boost to 
parallel applications. In addition to 
allowing the MPI to perform at least 
some form of asynchronous prog-
ress (particularly when used with 
communication co-processor-based 
networks), it allows the MPI to 
progress multiple communication 
operations simultaneously. 

Got any MPI questions you want 
answered?  Wondering why one MPI 
does this and another does that?  
Send them to jsquyres@lam-mpi.org.

Jeff Squyres is a post-doctoral research 
associate at Indiana University and is 
the lead developer for the LAM imple-
mentation of MPI. He can be reached at 
jsquyres@lam-mpi.org

Resources
ROMIO: A High-Performance, 
Portable MPI-IO Implementa-
tion: www.mcs.anl.gov/romio

MPI Forum (including the MPI-1 
and MPI-2 specification docu-
ments): www.mpi-forum.org

MPI — The Complete Refer-
ence: Volume 1, The MPI Core 
by Marc Snir, Steve Otto, Steven 
Huss-Lederman, David Walker, 
and Jack Dongarra. 

MPI — The Complete Refer-
ence: Volume 2, The MPI Exten-
sions  by William Gropp, Steven 
Huss-Lederman, Andrew Lums-
daine, Ewing Lusk, Bill Nitzberg, 
William Saphir, and Marc Snir.

NCSA MPI tutorial
webct.ncsa.uiuc.edu:8900/
public/MPI
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ROMIO: A Popular MPI-2 I/O Implementation

ROMIO is a popular implementation of many of the MPI-2 I/O func-
tion calls from Argonne National Laboratory (e.g., MPI_FILE_OPEN , 

MPI_FILE_READ , etc.). ROMIO’s implementation is layered on top of 
MPI-1 point-to-point communication; it is specifically designed as an add-
on to existing MPI implementations (such as LAM/MPI, LA-MPI, FT-MPI, 
and MPICH, to name a few). This layering creates problems because ROMIO 
cannot re-define the underlying type MPI_Request since it has already 
been defined by the underlying MPI implementation. Moreover, the back-
end of MPI_Request is different in every MPI implementation; ROMIO 
can’t extend it in a portable way.

ROMIO’s solution was to create a new type: MPIO_Request . All MPI_
FILE* functions that are supposed to take an MPI_Request as a param-
eter instead take an MPIO_Request . This situation means that ROMIO 
technically does not conform to the MPI-2 standard, but this detail is usu-
ally overlooked for the sake of portability and functionality.

There is a notable side effect, however. Since MPI_TEST and MPI_WAIT 
(and their variants) take MPI_Request arguments, they cannot accept RO-
MIO MPIO_Requests . Hence, ROMIO implements its own MPIO_TEST 
and MPIO_WAIT functions. As such, MPI implementations that use ROMIO 
generally do not support invoking the various TEST and WAIT functions with 
arrays of point-to-point and I/O requests


