
2 CLUSTERWORLD volume 2 no 11 volume 2 no 11 CLUSTERWORLD 3

OPEN MPI

MPI_Reduce: Introducing OpenMPI
 JEFF SQUYRES

I’m setting aside my usual monthly MPI Mechanic monthly column
to write a full-length article about a new Message Passing Inter-
face (MPI) implementation: Open MPI. Open MPI effectively repre-

sents the merger, or dare I say “reduction”, of three previously separate
MPI implementations: LAM/MPI from Indiana University (of which I
am the lead developer), LA-MPI from Los Alamos National Laboratory,
and FT-MPI from the University of Tennessee. Over the course of the
past year, The Ohio State University and the University of Stuttgart
have also been added to the Open MPI team. Table One shows the cur-
rent list of Open MPI members and their prior work.

e driving goals of the Open MPI project are as follows:

• Write a maintainable, open source, production-qual-
ity MPI implementation

• Emphasize high performance on a wide variety of
platforms

• Implement all of MPI- and MPI- (including true
support for multi-threaded MPI applications and
asynchronous progress)

• Pool our collective MPI implementation expertise
and eliminate replicated effort between multiple MPI
projects

• Take only the best ideas from our prior projects

• Provide a flexible MPI implementation suitable for a
wide variety of run-time environments and parallel
hardware

• Create a platform that enables world-class parallel
computing research

• Enable the greater HPC community to contribute

e first public release of Open MPI will be a beta-qual-
ity version available at the SC conference in Pittsburgh
in November . An abbreviated list of features is
listed below:

• Support endian and network
 heterogeneity (striping message
 passing across multiple networks)

• Natively support TCP/IP, shared
 memory, Myrinet, Quadrics, and
 Infiniband networks

• Support a wide variety of run-time
 environments

• Inherently based on a “pluggable”
 component architecture, allowing

MPI applications to choose their back-end networks
and run-time environments at execution time

• Open source with a BSD-like license

How Did This Happen?
e Open MPI project started as a result of a chance
meeting at a conference in late  between mem-
bers of the LAM/MPI, LA-MPI, and FT-MPI projects.
Over the next two months, casual conversations be-
tween team members turned into formal teleconfer-
ences that yielded a surprising insight (to us, at least):
although each of our three implementations each had
their own strengths and weaknesses, we shared a lot of
functional/code overlap.

Specifically, there were major portions of code that
we had each written that performed essentially the
same tasks in more or less the same way. In hindsight,
this duplication should not have been much of a revela-
tion — each of the three projects were MPI implemen-
tations, after all — but it was an eye-opening experi-
ence for us.

e obvious implication was that we should collab-
orate in order to reduce efforts replicated between our
projects. At SC, over a series of breakfast-through-
lunch meetings, we decided to write an entirely new
MPI implementation that, although strongly influenced
by our existing projects, would be a whole new code
base. e main idea was to take all the best ideas from
our current projects and put them into the new imple-
mentation. is new effort seemed to be a perfect op-

2 CLUSTERWORLD volume 2 no 11 volume 2 no 11 CLUSTERWORLD 3

OPEN MPI

portunity to “take the best; leave the rest”: extract the
best work from each project and jettison old kruft that
had built up over the years. Starting from scratch gave
us the perfect opportunity to learn from past mistakes
and “do it right this time.”

And that’s exactly what we did.
Over the past  months, Open MPI has grown into

[almost] a full MPI- implementation that not only rep-
resents the superset of the previous projects, but also
includes new designs and functionality not previously
available in other MPI implementations. e rest of this
article will provide an overview of the features and re-
search available in Open MPI, as well as outline our fu-
ture plans and directions.

What’s the Point?
e most frequently asked question that we get is:
“Why did you do this?” e most obvious answer is to
reduce replicated efforts between our previously sepa-
rate projects. By uniting under one MPI implementa-
tion, we have pooled resources such as: developers,
testers, software engineering know-how, MPI imple-
mentation experience, and testbed platforms. For ex-
ample: why continue to debug TCP socket-level in each
of our three previous projects? Having a single imple-
mentation of TCP socket code frees up developers to
work on other aspects of Open MPI.

Hence, not only did the total amount of work de-
crease, the total number of developers increased (at its
largest, the Open MPI project had  developers ac-
tively writing code). Having so many experienced MPI
developers has allowed us to make massive progress in
a relatively short amount of time. By completing the
majority of an MPI- implementation in  months, we
can now focus on more research-oriented projects —
using Open MPI as the vehicle for that research.

Although message passing is a relatively well-un-
derstood paradigm, there are still many unanswered
questions that will require investigation and rigorous
research.

We plan to explore them with Open MPI. Indeed,
we have already had the chance to do so with our design
and implementation of the MPI point-to-point commu-
nication. For example, Open MPI supports true multi-
threaded MPI applications while striping large messag-
es across heterogeneous networks.

We are not alone in this desire
— there are many third parties who
wish to conduct research in paral-
lel computing as well. Open MPI
was designed and constructed on a
component-based architecture. As

such, Open MPI is a collection of small, independent
components that are composed at run-time to form an
MPI implementation. ird parties (e.g., vendors and
researchers) can write and components and distribute
them independently of Open MPI. e learning curve
for each of the component types was deliberately de-
signed to be low, making the barrier to entry as small as
possible.

Open MPI also represents our latest work in high-
performance point-to-point message passing. Prelimi-
nary results indicate that Open MPI has ping-pong la-
tencies comparable to other MPI implementations but
with bandwidths up to  percent higher in high-speed
TCP networks. See the paper “Open MPI’s TEG point-
to-point communications methodology: Comparison to
existing implementations” on the Open MPI webite at
www.open-mpi.com.

Finally, we have effectively created a superset of our
previous work — all the best fea-
tures and cutting-edge research are
(or soon will be) included in Open
MPI. Since Open MPI is a produc-
tion-quality product, life should be
simpler for the end user.

In the first release of Open MPI,

 TABLE ONE
 Open MPI Member Organizations

ORGANIZATION PRIOR WORK

e Advanced Computing Laboratory LA-MPI

(CCS-), Los Alamos National

Laboratory

High Performance Computing Center PAC-X MPI

Stuttgart (HLRS), University of

Stuttgart

Innovative Computing Laboratory, FT-MPI

Department of Computer Science,

University of Tennessee

Network Based Computing Laboratory, MVAPICH

Department of Computer Science and

Engineering, e Ohio State University

Open Systems Laboratory, Pervasive LAM/MPI

Technologies Lab at Indiana University

At its largest, the Open
MPI project had 24
developers actively
writing code

4 CLUSTERWORLD volume 2 no 11

OPEN MPI

 volume 2 no 11 CLUSTERWORLD 5

OPEN MPI

many popular networking types (TCP/IP, shared mem-
ory, Infiniband, Quadrics, and Myrinet) and several
back-end run-time systems (rsh/ssh, RMS, and BProc)
are natively supported — each are affected through
standalone components. is feature gives users the
ability to run Open MPI in a wide variety of parallel en-
vironments.

Support for more networks and run-time systems
will be added in the near-term after the SC release.

Open MPI Features
Some of the most notable features of Open MPI are
listed below. Individually, some of the features are not
“new” (e.g., MPI implementations that support In-
finiband have been around for years). However, the fact
that they are all combined under a single MPI imple-
mentation is not only new, it is genuinely useful to end
users, system administrators, and vendors (i.e., having
a single MPI implementation installation that simul-
taneously supports Infiniband, Quadrics, and Myrinet
networking).

Full MPI-2 Implementation
A full MPI- implementation is something that open
source MPI projects have been chasing for years. Previ-
ous MPI implementations have been based on mono-
lithic software architectures that — regardless of how

well-abstracted and logically constructed — are highly
complex software packages, presenting a steep learning
curve for new developers and third parties.

ese existing code bases typically locked develop-
ment into highly specific implementation models and
were simply not designed with flexibility or extensi-
bility in mind. is restriction effectively prevented
extensions that did not already conform to existing
models (such as MPI- one-sided operations and dy-
namic processes).

Each of our own prior MPI implementations suf-
fered from this problem, which is one of the motivat-
ing reasons to start a new MPI implementation. We
therefore designed Open MPI from the ground up to
be both flexible and capable of all MPI- concepts.
The SC release of Open MPI will not include all of
MPI-, but it will be close (e.g., there simply wasn’t
time to implement the MPI- one-sided operations
before November).

Support Common Network Types
e majority of clusters use some shared memory, In-
finiband, Quadrics, Myrinet networking, and/or some
form of TCP/IP (e.g., Gigabit Ethernet). Open MPI na-
tively supports all of these network types. Specifically, an
application that is compiled with Open MPI can utilize
any of these networks without recompiling or re-linking.

The Message Passing Interface (MPI)

The Message Passing Interface (MPI) is the de facto stan-
dard for message passing parallel programming on large-

scale distributed systems. One of the main goals of the MPI
standard is to enable portability: parallel applications that
run on small, development platforms (e.g., a small Linux clus-
ter) will also run on larger, production systems (e.g., large
clusters or “big iron” specialized parallel hardware).

At the risk of repeating myself from an earlier MPI Me-
chanic column, I typically emphasize the following points
when explaining what MPI is:

1 MPI stands for the Message Passing Interface.

2 MPI is a standard defined by a large committee of ex-
perts from industry and academia.

3 The design of MPI was heavily influenced by decades of
“best practices” in parallel computing.

4 Although typically collectively referred to as the “MPI stan-

dard,” there are actually two documents (MPI-1 and MPI-2).

5 Implementations of the MPI standard provide message
passing (and related) services for parallel applications.

6 T here are many implementations of the MPI standard.

The MPI standard defines a set of functions that can be
used by applications to pass messages from one MPI pro-
cess to another. MPI actually defines a lot more services
than just message passing — but the heart and soul of
MPI is (as its name implies) passing messages between
MPI processes.

As noted in point three, there are actually two docu-
ments that comprise the MPI standard: MPI-1 and MPI-2.
MPI-1 is the “core” set of MPI services for message pass-
ing. It provides abstractions and mechanisms for basic
message passing between MPI processes (as well as some
additional features that are helpful for general parallel
computing). MPI-2 is a set of extensions and functionality
beyond what is defined in MPI-1 such as dynamic process
control, one-sided message passing parallel I/O, etc.

4 CLUSTERWORLD volume 2 no 11

OPEN MPI

 volume 2 no 11 CLUSTERWORLD 5

OPEN MPI

Additionally, Open MPI can use all of these net-
works simultaneously — striping large messages across
multiple networks where possible. Detection of which
network to use for a given message is largely automatic.
For example, if a message is sent from one MPI process
to another on the same node, shared memory will be
used. If a message is sent to a different node, the “best”
available network will be used (i.e., one of the high-
bandwidth / low latency networks such as Infiniband,
Quadrics, or Myrinet).

Multi-Threaded Applications
and Asynchronous Progress
One of the more elusive features of MPI- is MPI_
THREAD_MULTIPLE — the ability to support multiple,
concurrent application threads within an MPI library
while allowing them all to make simultaneous progress.
Open MPI was fundamentally designed to require only a
small number of fine-grained locks and local data storage
to enable efficient multi-threaded concurrency (the locks
are not used in single-threaded situations). True asyn-
chronous progress is also supported, using hidden “pro-
gression” threads within the MPI library. While there is
typically a latency penalty for asynchronous (due to add-
ed thread context switching), most applications struc-
tured to exploit overlap of communication and computa-
tion will still exhibit a net performance gain.

Support Common Runtime Systems
Many clusters still use rsh or ssh to start parallel MPI
applications. However, a growing number now use oth-

er back-end run-time systems such as SLURM, Sun Grid
Engine, BProc, PBS, etc. Open MPI expanded on work
from LAM/MPI to allow launching of MPI applications
in a wide variety of back-end run-time environments.
Open MPI can therefore deduce upon execution which
run-time environment it is executing under and in-
voke the appropriate handlers (analogous to how Open
MPI automatically figures out which network to use for
message communication). rsh /ssh , BProc, and RMS
clusters will be supported in Open MPI’s first release;
support for additional run-time environments will be
added in the near term after SC.

Component Architecture:
A Vehicle for Research
Open MPI is fundamentally based on the MPI Compo-
nent Architecture (MCA). e MCA is a collection of
component frameworks that provide services to Open
MPI at run-time. Each framework supports a single API
for its services; different implementations of this API
are called components. When a component is paired with
resources, it is called a module. For example, a process
running on a compute node that contains two Gigabit
Ethernet cards may have two modules of the TCP/IP
component in the point-to-point transfer framework.
Figure One shows how the MCA is conceptually orga-
nized. Note that the layers pictured in Figure One do not
represent call stacks at run-time — in most cases, once
initialized properly (usually during MPI_INIT) mod-
ules are invoked directly by the MPI layer for maximum
performance.

FIGURE ONE: Organization of the MCA

User application

MPI API

MPI Component Architecture (MCA)

Framework

Co
m

po
ne

nt

Co
m

po
ne

nt

Modules

Framework

Co
m

po
ne

nt

Co
m

po
ne

nt

Framework

Co
m

po
ne

nt

Co
m

po
ne

nt

Framework

Co
m

po
ne

nt

Co
m

po
ne

nt

Framework

Co
m

po
ne

nt

Co
m

po
ne

nt

6 CLUSTERWORLD volume 2 no 11

OPEN MPI

 volume 2 no 11 CLUSTERWORLD 7

OPEN MPI

e following is an abbreviated list of the MPI layer
component frameworks in Open MPI, and what they
are used for:

• coll: MPI collective algorithms. Provide back-end im-
plementations for MPI_BARRIER , MPI_BCAST, etc.

• io: MPI- I/O functionality. Currently only supports
the ROMIO MPI- IO implementation from Argonne
National Labs.

• one: MPI- one-sided operations. Provide back-end
implementations for MPI_GET, MPI_PUT, etc. is
framework will not be included in Open MPI’s first
release.

• op: Collective reduction operations. Provide opti-
mized implementations of the intrinsic MPI reduc-
tion operations, such as MPI_SUM , MPI_PROD, etc.
is framework will not be included in Open MPI’s
first release.

• pml: MPI point-to-point management layer. is
framework is the top layer in point-to-point com-
munications; the PML is responsible for fragment-
ing messages, scheduling fragments to PTL modules,
high level flow control, and reassembling fragments
that arrive from PTL modules.

• ptl: MPI point-to-point transport layer. is frame-
work is the bottom layer in point-to-point commu-
nications; the PTL is responsible for communicating
across a specific device or network protocol (e.g., TCP,
shared memory, Elan, GM /.x, Open IB, etc.).

• topo: MPI topology support. Provide back-end imple-
mentations of all the topology creation and mapping
functions.

e PML and PTL are described in detail in the paper
“TEG: A high-performance, scalable, multi-network
point-to-point communications methodology” on the
Open MPI website.s

Components are implemented as shared libraries.
Hence, using components means searching directories
and loading dynamic libraries (all of which is trans-
parently handled by the MCA). Extending Open MPI’s
functionality is therefore simply a matter of placing
components in the directories that Open MPI search-
es at run-time. For example, adding support for a new
network type entails writing a new PTL component and
placing its resulting shared library in Open MPI’s com-

ponent directory. MPI applications will instantly “see”
the component and be able to use it at run-time.

us, the MCA enables two main actions:

• Run-time decisions about which components to be
used. For example, if running an MPI application on
an Infiniband network, the “ib” PTL component will
automatically be found, selected, and used. Similar-
ly, if MPI processes are on the same node, the “sm”
(shared memory) PTL component will automatical-
ly be used to communicate between them. As such,
MPI applications are independent of the components
that comprise Open MPI: components can be added
or removed from the system without recompiling or
re-linking user applications. is feature is important
for software vendors; their product can be shipped
without knowledge of what components will be used
in a customer’s target environment.

• ird parties can develop and distribute their own
components. Since components can be added to an
Open MPI implementation at any time, components
can be distributed independently of the main Open
MPI software package. Vendors, therefore, can write
and distribute components that maximize perfor-
mance on their platforms. Developers can active-
ly research parallel computing topics in a produc-
tion-quality MPI without the steep learning curve
required for a monolithic MPI implementation. is
concept is explored further in the paper “e compo-
nent architecture of Open MPI: Enabling third-party
collective algorithms,” listed in the resources section
of this article.

Enable Community Contributions
ere are many organizations with a vested interest in
a high-quality MPI implementation because much of
today’s parallel computing is done with MPI. HPC ven-
dors, for example, need to provide a production-quality
MPI implementation quickly for new platforms in or-
der to attract users in the HPC community. Users need
to have highly tuned MPI implementations that enable
their applications to extract maximum performance
from their parallel environments. Researchers need a
production-quality MPI implementation that allows
them to quickly and easily experiment with new meth-
ods, techniques, and algorithms.

Indeed, rather that write a new MPI implementa-
tion from scratch, most of these needs can be accom-
modated by writing one or more components that “plug
in” to Open MPI. As such, third parties can even dis-
tribute components themselves; there is no need to be

6 CLUSTERWORLD volume 2 no 11

OPEN MPI

 volume 2 no 11 CLUSTERWORLD 7

OPEN MPI

included in the main Open MPI distribution nor be tied
to Open MPI’s release schedule. We want to encourage
both kinds of contributions: third-party components

as well as attract-
ing vendors and
other committed
developers join the
Open MPI project
(see the Open MPI
web site for more
details).

To that end,
Open MPI is the
first project of
Open HPC, Inc., a
non-profit organi-
zation recently es-

tablished for the promotion, dissemination, and use of
open source software in high-performance computing.
Open MPI therefore receives administrative support
from Open HPC. Open HPC is somewhat analogous to
the Apache Foundation; it is a parent organization that
aims to provide administrative support for high-qual-
ity open source HPC projects. More information about
Open HPC is available at their web site.

Wrapup
With our collective MPI experience, we have rapidly
produced a new MPI implementation that incorporates
all the best features from several previous projects as
well as complete redesigns in some areas tradition-
ally unexplored by MPI implementations. Open MPI
focuses on performance, production-quality software,
and usability with the intrinsic attitude that it should
“just work.” Although no software is perfect, we be-
lieve that Open MPI is greater than the sum of its pre-
decessors.

A natural question at this point is: “What about FT-
MPI, LAM/MPI, LA-MPI, MVAPICH, and PAC-X MPI?”
Only time will tell, but it is likely that each project will
eventually end when funding stops or be used exclu-
sively as a research vehicle for goals different than
Open MPI’s. Indeed, some of the projects must continue
to exist until their current funding expires.

We’d love to get users and vendors involved in the
effort. We invite you to visit our web site, www.open-
mpi.org, download the beta software, and join the an-
nouncements and/or general users’ mailing list.

Jeff Squyres is a post-doctoral research associate at Indiana Uni-
versity and is the one of the lead technical architects of the Open
MPI project. You can reach him at jsquyres@open-mpi.org.

Resources

MPI Forum (including the MPI-1 and MPI-2 specifica-
tion documents): www.mpi-forum.org

MPI — The Complete Reference: Volume 1, The MPI
Core (2nd ed) (The MIT Press) by Marc Snir, Steve
Otto, Steven Huss-Lederman, David Walker, and Jack
Dongarra. ISBN 0-262-69215-5.

MPI — The Complete Reference: Volume 2, The MPI
Extensions (The MIT Press) by William Gropp, Steven
Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill
Nitzberg, William Saphir, and Marc Snir. ISBN 0-262-
57123-4.

NCSA MPI tutorial
• webct.ncsa.uiuc.edu:8900/public/MPI
The Open MPI Project
• www.open-mpi.org
Open HPC, Inc.
• www.open-hpc.org
FT-MPI
• icl.cs.utk.edu/ftmpi
LA-MPI
• public.lanl.gov/lampi
LAM/MPI
• www.lam-mpi.org
MVAPICH
• nowlab.cis.ohio-state.edu/projects/mpi-iba
PAC-X MPI
• www.hlrs.de/organization/pds/projects/pacx-mpi

Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara
Angskun, Jack J. Dongarra, Jeffrey M. Squyres, Vishal
Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Rich-
ard L. Graham, and Timothy S. Woodall. Open MPI:
Goals, concept, and design of a next generation MPI
implementation. In Proceedings, 11th European PVM/
MPI Users’ Group Meeting, Budapest, Hungary, Sep-
tember 2004.

Jeffrey M. Squyres and Andrew Lumsdaine. The com-
ponent architecture of Open MPI: Enabling third-party
collective algorithms. In Proceedings, 18th ACM Inter-
national Conference on Supercomputing, Workshop
on Component Models and Systems for Grid Applica-
tions, St. Malo, France, July 2004.

Researchers need a
production-quality MPI
implementation that
allows them to quickly
and easily experiment with
new methods, techniques,
and algorithms.

