
34 CLUSTERWORLD volume 3 no 1 35volume 3 no 1 CLUSTERWORLD

MPI Mechanic  

us spake the master programmer:
“ough a program be but three
lines long, someday it will have to
be maintained.”

The Story So Far
Last month we started discussing
the cold, hard reality of high per-
formance computing: debugging in
parallel. Like Weird Uncle Joe, no
one wants to talk about it (every
family has a Weird Uncle Joe). All
the same kinds of nasty bugs that
can happen in serial applications
can also happen in parallel environ-
ments — magnified many times be-
cause they can happen in any pro-
cess in a parallel job. Even worse,
bugs can be the result of complex
interaction between processes and
possibly occur in separate processes
simultaneously. Simply put: paral-
lel bugs typically span multiple pro-
cesses. e analysis of a single core
file or subroutine may not yield the
root causes behind a bug.

But to repeat myself from last
month: fear not. For every bug,
there is a reason. For every reason,
there is a bug fix. Using the right
tools, you can spin a web to catch
bugs.

Last month we briefly discussed
four parallel debugging techniques:

• printf-style output debugging

• launching serial debuggers in par-
allel

• attaching serial debuggers to indi-
vidual parallel processes

• using parallel debuggers

e last one — parallel debuggers
— extends the traditional serial de-

Debugging in Parallel (in Parallel)
bugger concept by encompassing all
the processes in a parallel job under
a single debugging session. A vari-
ety of commercial parallel debug-
gers are available. is column is
not an advertisement, so I won’t be
displaying screen shots or review-
ing the functionality of these prod-
ucts — you can visit their web sites
and see the material for yourself.
But suffice it to say I strongly rec-
ommend the use of a parallel debug-
ger (see the Resources sidebar for
more information).

at being said, most of us don’t
have access to parallel debuggers, so
this month we’ll concentrate more
on the common-man approach to
parallel debugging.

Debugging A
Classic MPI Mistake
As mentioned several times previ-
ously in this column, the following
is a fairly common MPI program-
ming mistake when exchanging
messages between a pair of pro-
cesses:

1 MPI_Comm_size(comm, &size);

2 MPI_Comm_rank(comm, &rank);

3 if (2 == size) {

4 peer = 1 - rank;

5 MPI_Send(sbuf, ...,

 peer, comm);

6 MPI_Recv(rbuf, ...,

 peer, comm, &status);

7 }

An MPI implementation may per-
form the send on line  “in the
background,” but is also allowed to
block. Many MPI implementations
will implicitly buffer messages up
to a certain size before blocking; if
the message sent on line  is less
than N bytes, the send will return

more or less immediately (regard-
less of whether the message has ac-
tually transferred to the receiver or
not). But once the message is larger
than N bytes, the implementation
may block in a rendezvous protocol
while waiting for the target to post
a matching receive. In this case, the
code above will deadlock.

e solution is simple: have one
process execute a send followed by
a receive; have the other execute a
receive followed by a send. But the
problem is still the same: this error
may be buried in many thousands
(or millions) of lines of code. As-
suming that the messages are large
enough to force the MPI implemen-
tation to block, how would one find
this problem in the first place?

Depending on the logic of the
overall application, a binary search
with printf-style debugging can
probably [eventually] locate the bug
in some finite amount of time. In
the final iterations of the search,
inserting printf statements be-
fore and after the MPI_SEND would
likely positively identify the prob-
lem (i.e., the first printf message
would be displayed, but the second
would not).

e same result, however, can
be obtained in far less time by using
a debugger. printf-style debug-
ging, by definition, is trial-and-er-
ror — think of it as searching for
the location of the bug, as compared
to a debugger which (at least in this
case) can directly query “where is
the bug?”

Launching a serial debugger in
parallel, for example:

$ mpirun -np 2 xterm -e gdb \

 my_mpi_application

will launch  xterms, each running
a GNU debugger (gdb) with your

34 CLUSTERWORLD volume 3 no 1 35volume 3 no 1 CLUSTERWORLD

MPI Mechanic

MPI application loaded. In this case,
you can run the application in both
gdb instances and when it dead-
locks, hit control-C. e debugger
will show that both processes are
stuck in the MPI_SEND on line .
ere is no guesswork involved.

Note that this example assumes
that your MPI implementation al-
lows X applications to be run in par-
allel. is task is easy if you are run-
ning on a single node (in which case
X authentication is usually automag-
ically handled), or, if running on
multiple nodes, either X authentica-
tion is either disabled or setup such
that X credentials are passed prop-
erly. Consult your MPI implemen-
tations documentation for more
details — not all MPI implementa-
tions support this feature.

A slightly simpler, albeit more
manual, method is to mpirun the
MPI application as normal. When
it deadlocks, login to one or more
nodes where the application is run-
ning and attach a debugger to the
live process. is example assumes
Linux ps command line syntax:

$ mpirun -np 2 my_mpi_app &

$ ssh node17 ps -C my_mpi_app

 PID TTY TIME CMD

 1234 ? 00:00:12 my_mpi_app

You’ll need to use the “attach” fea-
ture of your debugger. With gdb:

$ ssh node17

Welcome to node17.

$ gdb -pid 1234

is action will attach the debugger
to that process and interrupt it. You
can list where the program counter
is, view variables, etc. As with the
case above, it will immediately iden-
tify that the application is stuck in
the MPI_SEND on line .

Serialized Debugging
It is somewhat of an epiphany to re-

alize that once applied in parallel,
debuggers can be just as powerful —
if not more so — than when used in
serial. Consider other common MPI

mistakes: mismatching the tag or
communicator between a send and
receive, freeing or otherwise modi-
fying buffers used in non-blocking
communications before they have
been completed with MPI_TEST or
MPI_WAIT (or their variants), receiv-
ing unexpected messages with MPI_
ANY_SOURCE or MPI_ANY_TAG, and
so on. All of these can be caught with
a debugger.

Debuggers can be used to effec-
tively serialize a parallel applica-
tion in order to help find bugs. By

To printf or not to printf?

I’ll begin by saying that you should not use printf as a debugging tool.
However, I know that most everyone will ignore me, so you might as well

be aware of some potential “gotchas” that occur with printf when run-
ning in parallel.

Remember that the node where your printf was issued may not be
the same node as where mpirun is executing (or whatever mechanism is
used to launch your MPI application). This condition means that the stan-
dard output generated from printf will need to be transported back
to mpirun, possibly across a network. This process has three important
side effects:

1 The standard output from printf will take some time before it appears
in mpirun’s standard output,

2 Standard output from printfs in different processes may therefore ap-
pear interleaved in the standard output of mpirun, and

3 Individual printf outputs may be buffered by the run-time system or
MPI implementation.

The last item is the most important: many a programmer has been tricked
into thinking that sections of code did not execute because they did not
see the output from an embedded printf. Little did they realize that
the code (and the printf) did execute, but the output of printf was
buffered and not displayed. Although most MPI implementations make a
“best effort” to display it, remember that the behavior of standard output
and standard error is not defined by MPI. Some implementations handle it
better than others.

If you are going to use printf debugging, it is safest to follow all
printf statements with explicit fflush(stdout) statements. While
this statement does not absolutely guarantee that your message will ap-
pear, it usually causes most MPI implementations and run-time systems to
force the message to be displayed.

Remember that the
bug(s) may span
multiple processes —
it is frequently not
enough to examine a
single process.

36 CLUSTERWORLD volume 3 no 1 37volume 3 no 1 CLUSTERWORLD

stepping through individual pro-
cesses in the parallel job, a devel-
oper can literally watch a message
being sent from one process and
received in another. If the trans-
fer does not occur as expected, the
debugger provides the flexibility to
look around to figure out why (e.g.,
the tags did not match). And even
if the message does transfer prop-
erly, buffers can be examined to
ensure that the received contents
match what were expected.

Memory-Checking
Debuggers
is type of “serialized debugging”
is useful to catch flaws in logic and
other kinds of [relatively] obvious
errors in the application. Ensnar-
ing more subtle bugs such as race
conditions or memory problems
can be trickier. Indeed, the timing
and resource perturbations intro-
duced by running through a debug-
ger can sometimes make bugs mys-
teriously disappear — applications
that consistently fail under normal
running conditions magically seem
to run perfectly when run under a
debugger.

e first step in troubleshoot-
ing such devious bugs is to run
your application through a memo-
ry-checking debugger such as Val-
grind. Consider the code in Listing
One. Despite the several obvious
problems with this code, it may
actually run to completion with-
out crashing (writing beyond the
end of the j array is probably still
within the allocated page on the
heap and will likely not cause a seg-
mentation violation).

Now consider that if code as
obviously incorrect as Listing One
can run seemingly without er-
ror, imagine applications that are
much larger and more complex
than this trivial example — there
are bound to be errors similar to
the ones shown in Listing One hid-

den within thousands (or millions)
of lines of code.

Memory-checking debuggers are
excellent tools in both parallel and
serial applications. Compile and run
Listing One through Valgrind:

$ gcc example.c -g -o example

$ valgrind -tool=memcheck \

 -logfile=valoutput example

Valgrind will show several distinct
errors (one output per MPI process,
named valoutput.pid[pid]:

1 Use of uninitialized variable on
line .

2 Illegal read on line .

3 Illegal write on line ,  bytes
beyond the array allocated on
line .

MPI Mechanic

4 Duplicate free on line .

Postmortem Analysis
Postmortem analysis is a tool that
is frequently overlooked. ose an-
noying core files that most people
either ignore or remove can actu-
ally be loaded into a compiler to
view a snapshot of the process just
before it crashed. Even if race con-
ditions disappear when run under
debuggers, core files can still be ex-
amined from failed runs; depend-
ing on the nature of the error and
the operating system’s settings, it
is not uncommon to get a core file
for each failed process in the paral-
lel job. Examining all the core files
can provide insight into the cause(s)
of a bug.

Intercepting Signals
If all else fails, it may be desirable

 LISTING ONE
 Multiple Memory Maladies

 1 #include <stdlib.h>
 2 #include <stdio.h>
 3 #include <mpi.h>
 4 int main(int argc, char* argv[]) {
 5 int rank, size, i, *j;
 6 MPI_Init(&argc, &argv);
 7 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 8 MPI_Comm_size(MPI_COMM_WORLD, &size);
 9 j = malloc(sizeof(int));
10 MPI_Send(&i, 2,
 MPI_INT,
 (rank+1) % size,
 123,
 MPI_COMM_WORLD);
11 MPI_Recv(j, 2,
 MPI_INT,
 (rank+size-1) % size,
 123,
 MPI_COMM_WORLD,
 MPI_STATUS_IGNORE);
12 MPI_Finalize();
13 free(j);
14 free(j);
15 return 0;
16 }

36 CLUSTERWORLD volume 3 no 1 37volume 3 no 1 CLUSTERWORLD

to install a signal handler to catch
segmentation faults (or whatever
signal is killing your application)
and print out the node’s name and
the process’ PID. Be careful, how-
ever — very little can be safely
executed in signal context. List-
ing Two shows an example of set-
ting up a printable string ahead
of time; the signal handler itself
only invokes write() to output
the string and then goes into an
infinite loop to wait for a debug-
ger to attach. This method po-
tentially avoids the overhead and
possible race condition timing
changes caused by active check-
ing in debuggers, increasing the
chance of duplicating the bug, and
therefore being able to catch it in
a debugger.

Where to Go From Here?
Debugging in parallel is hard...
but not impossible. Although it
shares many of the characteristics
of serial debugging, and although
many of the same tools can be
used (in creative ways), parallel
debugging must be approached
with a whole-system mindset. Re-
member that the bug(s) may span
multiple processes — it is fre-
quently not enough to examine
a single process in a parallel job.
And always always always use the
right tool. printf is rarely the
right tool.

Next month, we’ll discuss
some of the dynamic process mod-
els of MPI- — spawning new MPI
processes.

Got any MPI questions you want
answered? Wondering why one MPI
does this and another does that?
Send them to jsquyres@open-mpi.org.

Jeff Squyres is a post-doctoral research
associate at Indiana University and is
the one of the lead technical architects
of the Open MPI project. Email him at
jsquyres@open-mpi.org.

 LISTING TWO

 Sample Segmentation Fault Catcher

#include <stdio.h>
#include <signal.h>
#include <mpi.h>

static void handler(int);
static char str[MPI_MAX_PROCESSOR_NAME + 128];
static int len;

/* Setup a string to output */
void setup_catcher(void) {
 char hostname[MPI_MAX_PROCESSOR_NAME];

 MPI_Get_processor_name(hostname, &len);
 sprintf(str, “Seg fault: pid %d, host %s\n”,
 getpid(), hostname);
 len = strlen(str);
 signal(SIGSEGV, handler);
}

/* write() the string to stderr
 then block forever waiting for
 a debugger to attach
 */
static void handler(int sig) {
 write(1, str, len);
 while (1 == 1);
}

Resources
• Etnus Totalview Parallel Debugger — www.etnus.com/index.html
• Streamline DDT Parallel Debugger — www.streamline-computing.com
• LAM/MPI FAQ — www.lam-mpi.org/faq

(more information on debugging in parallel)
• Valgrind — valgrind.kde.org
• MPI Forum — www.mpi-forum.org
• NCSA MPI tutorial — webct.ncsa.uiuc.edu:8900/public/MPI

• MPI — The Complete Reference: Volume 1, The MPI Core (2nd ed)
(The MIT Press) by Marc Snir, Steve Otto, Steven Huss-Lederman, David
Walker, and Jack Dongarra. ISBN 0-262-69215-5.

• MPI — The Complete Reference: Volume 2, The MPI Extensions
(The MIT Press) by William Gropp, Steven Huss-Lederman, Andrew
Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir, and Marc Snir.
ISBN 0-262-57123-4.

• The Tao of Programming by Geoffrey James. ISBN 0931137071.

MPI Mechanic

