
40 CLUSTERWORLD volume 3 no 2 41volume 3 no 2 CLUSTERWORLD

MPI Mechanic  

ere once was a man from Nantucket
Whose PVM code kicked the bucket.
He ranted and raved,
“Oh, what can I save?”
en he re-wrote his application with
MPI and used MPI_COMM_SPAWN and
his life became fundamentally better.

The Story So Far
One of the big additions in MPI- is
the concept of dynamic processes.
However, early uses of it were rather
mundane and, truth be told, unnec-
essary. Indeed, dynamic processes
were added to MPI, at least in part,
as a political necessity since one of
the more important parallel run-
time systems prior to MPI included
the ability to spawn new processes
at run-time. Let’s take a trip back in
history to examine one of MPI’s pre-
decessors, the Parallel Virtual Ma-
chine (PVM)...

PVM
PVM was a project out of the Oak
Ridge National Laboratory (ORNL)
in the early ’s and was one of the
first truly portable parallel run-
time systems. PVM allowed scien-
tists and engineers to develop par-
allel codes on their workstations
and then run them on “big iron”
production machines. PVM became
enormously popular and enjoyed a
large, fervent user base.

Although PVM had the capa-
bility to launch multiple processes
simultaneously and bind them to-
gether into a job, most users tend-
ed to prefer a different model for
launching their parallel applica-
tions. ey would simply launch a
single, serial process (e.g., . /a.out)
and use PVM’s spawning capabili-
ties to launch the rest of the pro-
cesses required for the parallel ap-

The Spawn of MPI plication. Indeed, this became the
de facto method of launching paral-
lel applications in PVM.

MPI’s design was strongly in-
fluenced by PVM (among others).
However, for a variety of techni-
cal reasons, the ability to spawn
new processes was left out of the
initial MPI specification (MPI-).
Although the MPI- standard does
not specify how to start a parallel
job, most implementations launch
a set of processes together using
an implementation-dependent
mechanism, frequently a command
named mpirun. is set of processes
comprises the MPI_COMM_WORLD
communicator. e size and com-
position of MPI_COMM_WORLD is
fixed upon initiation: no processes
can be added to or removed from
MPI_COMM_WORLD.

e PVM community scoffed at
this aspect of MPI- — why should
a parallel application be limited
in the number of processes that it
could have?

Even though the vast major-
ity of PVM applications only used
spawning capabilities to launch
their initial job, and even though
MPI implementations could sup-
port parallel applications as large
as PVM (if not larger), this mis-
conception on the part of many
PVM users slowed the initial adop-
tion of MPI. Ironically, the startup
mechanism in MPI is simpler than
PVM’s launch-one-process-that-
launches-all-the-rest model. Spe-

cifically, the typical PVM model
requires that the user write the
spawning code. MPI implementa-
tions’ built-in mpirun commands
(or equivalent) handled most of
the same functionality.

ese facts were lost in the
Great MPI/PVM Religious Debates
of the early- and mid-’s.

Admittedly, I’m presenting the
MPI view of most of the arguments.
But the fact remains that MPI was
built upon the shoulders of PVM
and used many of its good ideas (in-
deed, the PVM developers were on
the MPI Forum). Spawning sim-
ply was (initially) not one of them.
ree different dynamic process
models were later added in the MPI-
 standard.

Spawning New Processes
e first model is, unsurprisingly,
spawning new processes. Keep in
mind, however, that MPI- was in-
tended to be extensions to MPI- —
not changes. So if the static model of
a fixed MPI_COMM_WORLD remains,
what does spawning new processes
mean in MPI?

In short, it means launching an-
other MPI_COMM_WORLD. Spawn-
ing is a collective action, meaning
the processes in a communicator
must unanimously decide to launch
a new set of processes. at is, they
all invoke the function MPI_COMM_
SPAWN (or MPI_COMM_SPAWN_MUL-
TIPLE) and instruct MPI to launch
a new MPI job that has its own MPI_
COMM_WORLD.

e code snippet in Listing One
launches four copies of an execut-
able named “child ” collectively
across the processes in the spawn-
ing job’s MPI_COMM_WORLD. is ac-
tion creates a new MPI job with its
own MPI_COMM_WORLD, containing
four processes. at is, at the end

The fact remains that
MPI was built upon
the shoulders of PVM
 and used many of its
good ideas

40 CLUSTERWORLD volume 3 no 2 41volume 3 no 2 CLUSTERWORLD

MPI Mechanic

of MPI_COMM_SPAWN, there will be
two MPI_COMM_WORLD instances —
one per job. Each will have ranks 
through (number of processes — ).

Communication is established
between the two jobs through
an intercommunicator — the
children argument to MPI_
COMM_SPAWN, above. An inter-
communicator is similar to an in-
tracommunicator (i.e., a “normal”
communicator, such as MPI_COMM_
WORLD) except that it contains two
“groups.” In this case, one group
is the spawning process; the oth-
er group is the spawned process.
When using intercommunicators,
the peer argument of all commu-
nication calls is always expressed
in terms of the other group. Hence,
line  in Listing One is sending to
rank  of the children’s group.

e newly spawned application
can call MPI_COMM_GET_PARENT to
obtain this communicator (see List-
ing Two). Again, since communica-

tion with intercommunicators is ex-
pressed in terms of the other group,
the peer argument given to MPI_
RECV on line  in Listing  is rank

 of the parent’s group. Hence, it is
receiving the message sent from the
MPI_SEND on line  in Listing One.

Some applications are flexi-
ble in that they may be run direct-
ly (e.g., via mpirun) or they may
be spawned. If an application was
spawned, a valid communicator
will be returned from MPI_COMM_
GET_PARENT. If it was not, MPI_
COMM_NULL will be returned (i.e.,
there is no parent because it was not
spawned).

e MPI_COMM_SPAWN_MUL-
TIPLE function behaves the same
as MPI_COMM_SPAWN, except that it
allows launching an array of differ-
ent executables and command line
arguments in a single MPI_COMM_
WORLD — a multiple process, multi-
ple data (MPMD) style of launching.

Connect/Accept
e SPAWN functions are used for
creating new MPI jobs. But what
about existing (potentially unrelated)
MPI jobs that want to establish com-
munication between each other?

Taking inspiration from the TCP
socket connect/accept model, the

MPI-2

In 1994, the MPI Forum re-convened to add on to the MPI-1 standard.
Several large topics were proposed for inclusion: parallel I/O, new lan-

guage bindings, one-sided operations, and dynamic processes (to include
spawning).

Although strong technical cases were not initially presented as to why
dynamic processes needed to be included in the MPI-2 standard, it was
seen as a political necessity to address the PVM community’s concerns. In
typical MPI fashion, the MPI-2 standard includes not only spawning, but a
total of three different models for dynamic process management (three is
better than one, right?).

Initial implementations of the MPI-2 dynamic process control mod-
els started appearing around 1997. The first uses of it were pretty much a
direct port of the PVM start-one-process-that-starts-all-the-rest model.
These mainly comprised PVM users porting their applications to MPI in
order to take advantage of low-latency networks or utilize vendor-tuned
MPI implementations. It was only within the last few years that more in-
teresting uses have become possible through mature, thread-safe imple-
mentations of the MPI dynamic process models.

 LISTING TWO

 Sample spawned child
1. #include “mpi.h”
2. int main(int argc, &argv) {
3. int rank, msg;
4. MPI_Comm parent;
5. MPI_Init(&argc, &argv);
6. MPI_Comm_get_parent(&parent);
7. MPI_Comm_rank(MPI_COMM_WORLD, &rank);
8. if (0 == rank)
9. MPI_Recv(&msg, 1, MPI_INT, 0, 0,
 parent, MPI_STATUS_IGNORE);
10. /* ... */

 LISTING ONE
 Sample spawn
1. int rank, err[4];
2. MPI_Comm children;
3. MPI_Comm_rank(MPI_COMM_WORLD, &rank);
4. MPI_Comm_spawn(“child”, NULL, 4, MPI_INFO_NULL,
 0, MPI_COMM_WORLD,
 &children, err);
5. if (0 == rank)
6. MPI_Send(&rank, 1, MPI_INT, 0, 0, children);

42 CLUSTERWORLD volume 3 no 2 43volume 3 no 2 CLUSTERWORLD

MPI functions MPI_COMM_CON-
NECT and MPI_COMM_ACCEPT can
be used to emulate client-server
functionality. Specifically, a “server”
process can invoke MPI_COMM_AC-
CEPT and wait for a “client” process
to invoke MPI_COMM_CONNECT to
connect to it. is sequence allows
two independent MPI jobs to estab-
lish communication with each oth-
er. Similar to the SPAWN functions,
the output of CONNECT and ACCEPT
is an intercommunicator.

In the TCP model, IP address-
es and port numbers are used to
specify the destination of a con-
nect attempt. In MPI, such distinc-
tions are meaningless — some MPI
implementations do not even sup-
port TCP. Analogous to an (IP ad-
dress, TCP port) tuple, MPI uses
the somewhat confusingly named
concept of “ports” as connection
endpoints (which have nothing to
do with TCP ports).

A server process opens a port
with a call to MPI_OPEN_PORT. is
port is passed to MPI_COMM_AC-
CEPT to create a connection end-
point. MPI_OPEN_PORT will also
return the name of the port in a dy-
namic, implementation-dependent
string that can be used by the client
in its call to MPI_COMM_CONNECT.
However, this is a chicken-and-egg
problem — how could the client
know the server’s port name unless
they already have some established

form of communication?
MPI provides a port name look-

up service: the server publishes
its port name under a well-known
string (e.g., “server”) with a call to
MPI_PUBLISH_NAME. e client
invokes MPI_LOOKUP_NAME with

MPI Mechanic

the well-known string (“server”)
and obtains the server’s port name,
which is then used to call MPI_
COMM_CONNECT.

is publish/lookup system is
analogous to how DNS is used to
translate human-readable names
to IP addresses. For example,
when a user types www.yahoo.com
into a browser, the browser per-
forms a DNS query to resolve this
to an IP address that can be used
to connect to the server. Change
www.yahoo.com to “server,” and “IP
address” to “[MPI] port name,” and
the above example is probably much
clearer.

Join
e third and final dynamic pro-
cess model in MPI- is MPI_COMM_

Resources
• MPI Forum www.mpi-forum.org
• NCSA MPI tutorial webct.ncsa.uiuc.edu:8900/public/MPI

• MPI — The Complete Reference: Volume 1, The MPI Core (2nd ed)
(The MIT Press) by Marc Snir, Steve Otto, Steven Huss-Lederman, David
Walker, and Jack Dongarra. ISBN 0-262-69215-5.

• MPI — The Complete Reference: Volume 2, The MPI Extensions (The MIT
Press) by William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ew-
ing Lusk, Bill Nitzberg, William Saphir, and Marc Snir. ISBN 0-262-57123-4.

The Problem with Schedulers

Dynamic processes present many problems for MPI implementers, the
most notable of which is what to do in a scheduled environment.

Most MPI users have become accustomed to reserving enough nodes/
CPUs for their initial parallel job. For example, consider a scheduled cluster
where a user receives an allocation of four CPUs and launches a four-pro-
cess MPI job (i.e., a MPI_COMM_WORLD size of four). If this MPI application
invokes MPI_COMM_SPAWN to launch eight more processes, where should
these processes be invoked?

• Oversubscribe the nodes: launch the eight new processes the current al-
location. This method is possible (and easy), but most HPC applications
will not want this because it will likely lead to performance degradation,
since multiple processes will be timesharing each CPU.

• Launch on new nodes: this can only occur by obtaining new nodes/
CPUs from the scheduler. This action will most likely mean putting the
resource request at the end of the scheduler’s queue, and may involve a
lengthy wait (minutes, hours, or even days). The result is a blocked MPI_
COMM_SPAWN for the entire time, potentially wasting a lot of time in the
current allocation.

Hence, this is still very much an open question for MPI implementers. In-
deed, some vendor MPI implementations have not implemented the MPI-
2 dynamic functionality only because they are typically used in production
scheduled environments where the focus is to keep the computational
resource full — there will never be free resources to SPAWN new jobs on
without waiting in the scheduler’s queue.

42 CLUSTERWORLD volume 3 no 2 43volume 3 no 2 CLUSTERWORLD

JOIN. Two processes invoke MPI_
COMM_JOIN, each with one end of a
common TCP socket (MPI does not
specify how this socket was creat-
ed — it is the application’s respon-
sibility). MPI can use the socket for
startup negotia-
tion in order to
establish its own
communication
channel(s). Upon
return from
MPI_COMM_
JOIN, the TCP
socket is drained (but still open)
and an intercommunicator contain-
ing the two processes (each in their
own group) is returned.

Although this model may seem
unnatural, having the application
establish the initial communica-
tion channel is valuable in that it al-
lows the use of an external connec-
tion mechanism (i.e., the socket).

is feature effectively provides an
“escape” from the MPI run-time en-
vironment and allows a potentially
much wider range of connectivity
than is natively supported by the
MPI implementation — anywhere

that the applica-
tion can connect
a socket.

Keep in
mind that there
is no guaran-
tee that the MPI
implementation

will be able to establish an inter-
communicator with the process on
the remote end of the socket.

For example, some MPI imple-
mentations are geared toward op-
erating system bypass networks;
if there is no common OS-bypass
network between the two pro-
cesses, the join may fail. Other
problematic scenarios may include

intermediate firewalls or other
limited connectivity between peer
processes.

Where to Go From Here?
We’ve covered the background
and the basics of MPI- dynamic
processes. Next month, we’ll pro-
vide some meaningful examples
of why and how they can be use-
ful in HPC applications, especially
when paired with multi-threaded
scenarios.

Got any MPI questions you
want answered? Wondering
why one MPI does this and an-
other does that? Send them to
jsquyres@open-mpi.org.

Jeff Squyres is a post-doctoral research
associate at Indiana University and is the
one of the lead technical architects of the
Open MPI project. He can be contacted at
jsquyres@open-mpi.org.

Keep in mind, however,
that MPI-2 was intended
to be extensions to
MPI-1 — not changes

