
2 CLUSTERWORLD volume 3 no 3 3volume 3 no 3 CLUSTERWORLD

MPI Mechanic  

March — a month of celebration.
It’s the time when everyone around
the world unites in joy and praise.
I’m speaking of Pi Day, of course
— on /. All HPC users should
contribute to the Pi revelry by com-
puting and reciting as much of Pi as
possible. What better way to do this
than to optimize approximate com-
putations of Pi in parallel?

The Story So Far
Last month we outlined the three
models of dynamic processes in
MPI: spawning new processes using
MPI_COMM_SPAWN and MPI_COMM_
SPAWN_MULTIPLE, client/server
connections between existing MPI
processes using MPI_COMM_ACCEPT
and MPI_COMM_CONNECT (and sup-
porting functions MPI_OPEN_PORT,
MPI_PUBLISH_NAME, MPI_LOOK-
UP_NAME, and MPI_CLOSE_PORT),
and using independently estab-
lished sockets between existing MPI
processes using MPI_COMM_JOIN.

All of these models are synchro-
nous, meaning that they block until
the action is completed. With some
strong caveats about scheduled envi-
ronments (discussed last month), the
SPAWN functions will likely be com-
pleted more or less immediately (i.e.,
they will probably take as much time
as an MPI implementation’s job start-
up mechanism, such as mpirun).
Hence, it will usually block for a short
while, but complete in finite time.
JOIN, while fundamentally asynchro-
nous in nature, is likely to be used
mainly in synchronous situations.
Specifically, since a TCP socket must
be established prior to invoking JOIN,
the asynchronous aspects of connect-
ing two previously existing process-
es are satisfied elsewhere, and JOIN
will likely be invoked right after the

Is Your Application spawnworthy?
socket has been established. So JOIN
is also likely to be used in finite/time-
bounded situations.

ACCEPT and CONNECT, however,
are different. ey are fundamentally
asynchronous both in nature and use.
e “server” process blocks in ACCEPT
until a “client” process calls a corre-
sponding CONNECT. Since the client
process is likely to be independent of
the server, it is effectively random as
to when the client will invoke CON-
NECT. is situation can leave the
server blocking indefinitely, and is
unsuitable for most single-threaded
applications/MPI implementations.

Threads to the Rescue
ACCEPT works best when it can be left
blocking in an independent thread.
is thread can simply loop over
MPI_COMM_ACCEPT, accepting cli-
ent connections and then dispatch-
ing them to other parts of the server
upon demand. is method is actu-
ally quite similar to how many client/
server applications are implemented.
e server process can continue other
meaningful work and be interrupted
with client requests only as necessary.

A side effect of this approach
(and the MPI design) is that the AC-
CEPT cannot be interrupted or killed
cleanly. In order to shut down the
server process, a dummy connection
must be made to the server’s pending
ACCEPT (probably originating from
within the server process itself) that
issues a command telling the accept-
ing thread to break out of its ACCEPT
loop and die. is trick is necessary
because it is illegal for an ACCEPT to
be pending when another thread in
the server invokes MPI_FINALIZE.

Note that not all MPI implemen-
tations support ACCEPT/CONNECT (or
MPI- dynamic processes in general)

and multi-threaded MPI applications.
e MPI implementation that I work
on, Open MPI, does, and is the basis for
the examples provided in this column.

Disconnecting
Once communication between dy-
namic processes is no longer required,
the function MPI_COMM_DISCON-
NECT can be invoked to formally
break communication channels be-
tween the processes (see the “MPI
Connected” sidebar). Connected pro-
cesses impact each other in several
ways; independent processes are un-
affected by each other’s run-time be-
havior (in terms of MPI semantics).

Hence, processes that are
spawned are connected to their par-
ents. Processes that establish com-
munication via CONNECT and AC-
CEPT or JOIN are also connected.

To disconnect from another job,
all groups referring to processes in
that job must be freed. Groups span-
ning the two jobs may exist in com-
municators, file handles, or one-sid-
ed window handles (the later two are
not discussed in this month’s col-
umn). Hence, it may be necessary to
free multiple handles (communica-
tors, files, windows) before processes
become independent of each other.

Note that communicators must
be released via MPI_COMM_DISCON-
NECT instead of MPI_COMM_FREE.
ere is a subtle but important dif-
ference: MPI says that MPI_COMM_
FREE only marks the communicator
for deallocation and is guaranteed
to return immediately; any pending
communication is allowed to contin-
ue (and potentially complete) in the
background. MPI_COMM_DISCON-
NECT will not return until all pending
communication on the communicator
has completed. Hence, when DISCON-
NECT returns, the communicator has
truly been destroyed.

2 CLUSTERWORLD volume 3 no 3 3volume 3 no 3 CLUSTERWORLD

MPI Mechanic

Concrete Example
Last month, I mentioned that many
of the early uses of MPI- dynamic
processes were rather mundane and
usually unnecessary (e.g., launch a
singleton ./a.out that launches all
of its peers). Now that threads can be
mixed with MPI function calls, par-
ticularly with respect to dynamic pro-
cess functionality, more interesting
(and useful) options are available.

In short, MPI has previously
been used mainly for parallel com-
puting. With proper use of MPI-
dynamic process concepts, MPI can
be used for distributed computing.

For example, the canonical
manager/worker parallel model is
as follows: a manager starts a set
of workers, doles out work to each
of them, and waits for results to
be returned. e send-work-and-
wait-for-answers pattern is repeat-
ed until no work remains and all
the results have been collected. e
master then tells all workers to quit
and everything shuts down.

However, consider reversing the
orientation of model: the manager
starts up and waits for workers to
connect and ask for work. at is,
workers start — and possibly shut
down — independently of the man-
ager. is concept is not new; it is
exactly what massively distributed
projects such as distributed.net and
SETI@home (and others) have been
doing for years. Although this has
been possible in some MPI imple-
mentations for some time, only re-
cently have some implementations
started to make scalable, massively
distributed computing a reality.

Consider a large corporation that
has thousands of desktop comput-
ers. When the employees go home
at night, the machines are typically
powered off (or are otherwise idle).
What if, instead, those machines
could be harnessed for large-scale
distributed computations? is goal
has actually been the aspiration of

many a CIO for years.
Corralling all the machines si-

multaneously to start a single par-
allel job is an enormous task (and
logistically improbable, to say the
least). But if a user-level MPI process
on each machine started itself — in-
dependently of its peers — when the
employee went home for the eve-
ning, the model becomes much more
feasible. is MPI process can con-
tact a server and join a larger compu-
tation and run all night. When the
employee returns in the morning,
the MPI process can disconnect from
the computation (independently
from its peers) and go back to sleep.

e model is also interesting
when you consider the heteroge-
neous aspects of it: employee work-
stations may be one of many differ-
ent flavors of POSIX, or Windows. A
portable implementation of MPI can
span all of these platforms, using
the full power of C, C++, or Fortran

(whatever the science/engineering
team designing the application pre-
fers) to implement the application on
multiple platforms. MPI takes care
of most of the heterogeneous aspects
of data communication — potential-
ly allowing the programmers to con-
centrate on the application (not the
differences between platforms).

e server will need to exhibit
some fault-tolerant characteristics.
For example, it must be smart enough
to know when to re-assign work to
other resources because a worker sud-
denly became unavailable. However,
these are now fairly well-understood
issues (particularly in manager-work-
er models) and can be implemented in
a reasonable fashion.

Granted, this model only works
for certain types of applications. But
it is still a powerful — and simple
— concept that can is largely unex-
ploited with modern MPI implemen-

MPI “Connected”

MPI formally defines the communication status between two pro-
cesses — they are either “connected” or “disconnected” (MPI-2 sec-

tion 5.5.4):
Two processes are connected if there is a communication path (direct

or indirect) between them. More precisely:
 1. Two processes are connected if:
 (a) they belong to the same communicator (inter- or intra-,

 including MPI_COMM_WORLD) or
 (b) they have previously belonged to a communicator that was freed

 with MPI_COMM_FREE instead of MPI_COMM_DISCONNECT or
 (c) they both belong to the group of the same window or filehandle.
 2. If A is connected to B and B to C, then A is connected to C.

Two processes are disconnected (also independent) if they are not connected.
As such, the state of being “connected” is transitive. This situation has

implications for MPI_COMM_ABORT (used to abort MPI processes), run-
time MPI exception handling, and MPI_FINALIZE (used to shut down
an MPI process). MPI_COMM_ABORT and MPI_ERRORS_ABORT are al-
lowed (but not required) to abort all connected processes. MPI_FINAL-
IZE is collective across all connected processes. Hence, in order to ensure
that processes do not unintentionally block in MPI_FINALIZE, it is a
good idea for dynamic processes to DISCONNECT when communication
between them is no longer required.

See MPI, page 

4 CLUSTERWORLD volume 3 no 3

tations, mainly (I think) because
people are unaware that MPI can be
used this way.

Where to Go From Here?
It should be noted that there are re-
search projects and commercial prod-
ucts that are specifically designed
to utilize idle workstations. Condor,
from the University of Wisconsin at
Madison, is an excellent project that
whose software works well, but is
mainly targeted at serial applications
(although recent efforts are concen-
trating on integrating Condor into
grid computations). Several vendors
have products that function similar-
ly to distributed.net and SETI@home
clients (a small daemon that detects
when the workstation is idle and re-
quests work from a server). is situa-
tion is also quite similar to what some
people mean by the term “grid com-
puting.” However, none of these cur-

rent efforts use MPI for their commu-
nication framework.

I want to be absolutely clear
here: I am not saying that MPI is the
answer to everyone’s distributed
computing problems. I am simply
saying that the familiar paradigm
of MPI can also be used for distrib-
uted computing. While the concepts
for it may be relatively young in MPI

MPI Mechanic

implementations, the definitions in
the standard make it possible, and
support in MPI implementations is
growing all the time (e.g., in Open
MPI). I encourage readers to explore
this concept and demand more from
your MPI implementers.

Jeff Squyres can be reached at
jsquyres@open-mpi.org.

Resources
• Pi Day FAQ mathforum.org/t2t/faq/faq.pi.html
• Condor project www.cs.wisc.edu/condor
• Open MPI www.open-mpi.org
• MPI Forum www.mpi-forum.org
• MPI — The Complete Reference: Volume 1, The MPI Core (2nd ed)

(The MIT Press) by Marc Snir, Steve Otto, Steven Huss-Lederman, David
Walker, and Jack Dongarra. ISBN 0-262-69215-5.

• MPI — The Complete Reference: Volume 2, The MPI Extensions (The MIT
Press) by William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ew-
ing Lusk, Bill Nitzberg, William Saphir, and Marc Snir. ISBN 0-262-57123-4.

The real jump is with Bioinformatics

