
2 CLUSTERWORLD volume 3 no 4 3volume 3 no 4 CLUSTERWORLD

MPI Mechanic

You (And Your Code)
Will Be Assimilated
We are the MPI. You will be assimi-
lated. Your code and technological
distinctiveness will be added to our
own. Resistance is futile. Your code
will run everywhere... won’t it?

The Story So Far
In each of these monthly columns,
I am careful to distinguish between
the MPI standards specification and
the behavior of a given MPI imple-
mentation. ere are many MPI
implementations available - some
vendors even have more than one.
But why? Wasn’t the goal of MPI to
simplify all of this and make it easy
to have portable parallel processing
applications? I have personally seen
clusters with over twenty different
MPI implementations installed - it
was each user’s responsibility to de-
termine which one they should use
for their application (and set their
PATH and other environment fac-
tors properly). is scenario is un-
fortunately not uncommon.

Indeed, with the myriad of dif-
ferent implementations available,
independent software vendors
(ISVs) attempting to sell closed-
source parallel applications that use
MPI typically have considerable lo-
gistical QA challenges. ey already
have to QA certify their applica-
tion across a large number of hard-
ware and operating system combi-
nations; add a third dimension of
MPI implementations, and the total
number of platforms to QA certify
against grows exponentially.

But Aren’t MPI Applications
Portable?
To be fair, the MPI Forum’s goal was
to enable source code portability, al-

Why Are There So Many MPI Implementations?
lowing users to recompile the same
source code on different platforms
with different MPI implementa-
tions. Even though some aspects of
the MPI standard are not provided
by all MPI implementations, MPI
applications are largely source code
portable across a wide variety of
systems. Indeed, application source
code portability is one of the largest
contributing factors to the success
of MPI.

Binary portability — the ability
to run the same executable on mul-
tiple platforms (a la Java applets)
or the ability to run the same ex-
ecutable with different MPI imple-
mentations on the same platform
— was not one of the MPI Forum’s
original goals. As such, the MPI
standard makes no effort to stan-
dardize the values of constants, the
types of C handles, and several oth-
er surface-level aspects that make
an MPI implementation distinct.

After MPI- was published, pro-
posals have been periodically in-
troduced for binary MPI interoper-
ability (such as between the open
source MPI implementations). Al-
though these proposals have never
succeeded, it has not been because
the implementers think that this
is a Bad Idea — reducing the logis-
tics of users and ISVs is definitely a
Good ing™. ey have failed be-
cause each MPI implementation has
made fundamental design choices
that preclude this kind of binary in-
teroperability. More on this below.

 Note that this goal says nothing
about performance portability - the
potential for unmodified applica-
tions to run with the same perfor-
mance characteristics in multiple
MPI implementations. Previous edi-
tions of this column have discussed

the hazards about implied assump-
tions about your MPI implementa-
tion (e.g., whether MPI_SEND will
block or not).

But the basic questions remain:
why are there so many MPI imple-
mentations? And why are they so
different?

To answer these questions, one
really needs to look at what an MPI
implementation has to provide to
adhere to the standard, and then
what the goals of that particular im-
plementation are.

The Letter of the Law
As has been mentioned many times
in this column, the MPI standard —
consisting of two documents: MPI-
and MPI- — is the bible to an MPI
implementer. An implementation
must adhere to all of the standard’s
definitions, semantics, and API de-
tails in order to be conformant.

At its core, an MPI implemen-
tation is about message passing
- the seemingly simple act of mov-
ing bytes from one process to an-
other. However, there are a large
number of other services and data
structures that accompany this core
functionality. e MPI specification
contains over API functions
and tens of pre-defined constants.
Each of these API functions have
specific, defined behavior (frequent-
ly related to other API functions) by
which you must obey.

e data structures required to
support such a complex web of in-
teractions are, themselves, complex.
Open MPI’s internal communicator
structure, for example, contains
members (of which either con-
tain or point to other structures).
e creation and run-time mainte-
nance of these structures is an intri-

2 CLUSTERWORLD volume 3 no 4 3volume 3 no 4 CLUSTERWORLD

MPI Mechanic

cate task, requiring careful coding
and painstaking debugging.

The Spirit of the Law
Even with the MPI standard, there
are many places — both deliberate
and [unfortunately] unintention-
al — where the text is ambiguous,
and an MPI developer has to make
a choice in the implementation.
Should MPI_SEND block or return
immediately? Should a given mes-
sage be sent eagerly or use a rendez-
vous protocol? Should progress oc-
cur on an asynchronous or polling
basis? Are user threads supported?
Are errors handled? And if so, how?

And so on — the list is endless.
Each implementer answers

these questions differently, largely
depending on the goals of the spe-
cific implementation. Some MPI
implementations are “research qual-
ity” and were created to study a
specific set of experimental issues.
Such implementations are likely
to take short cuts in many areas
and concentrate on their particu-
lar research topic(s). Other imple-
mentations are hardened/produc-
tion quality, and must be able to
run large parallel jobs for weeks at
a time without leaking resources or
crashing.

Some implementations are tar-
geted at specific platforms, inter-
connects, run-time systems, etc.,
while others are designed to be
portable across some subset of the
(platform, network, run-time sys-
tem) tuple. In some ways, writ-
ing single-purpose MPI implemen-
tations (e.g., for a specific set of
hardware/network/run-time sys-
tem) can be dramatically simpler
than writing portable systems.
Since it only has to work on one op-
erating system, with one compiler,
and one network, the code is far less
complex than a portable system.

at being said, I’ve had discus-
sions with developers of such sin-

gle-system implementations and,
despite the homogeneity of their
target systems, their job is not easy.
I’ve known developers who cheer-
fully break out logic analyzers to
watch bus activity during an MPI
run in order to fully understand all
activity on the machine in order to
further optimize their MPI. I even
know of one [unnamed] vendor’s
implementation that used self-mod-
ifying code in order to avoid two
cache misses and reduce latency
by a few tens of nanoseconds. at
particular trick had to get sign-offs
from several levels of management
in order to pass QA, but in the end,
contributed to delivering an ex-
tremely high-performing MPI to the
company’s customers.

Let’s take a short tour of some
other choices that an MPI imple-
menter has to make.

MPI Handles:
Pointers or Integers?
is may seem like a trivial mat-
ter, but it has wide-reaching effects
throughout the entire MPI imple-
mentation. A communicator, for
example, has a bunch of internal

data associated with it (the mem-
bers of the group, the error-han-
dler associated with it, whether the
communicator is an inter- or in-
tra-communicator, and so on). An
implementation typically bundles
all this information together in a C
structure (or C++ object) and pro-
vides the application with some
kind of handle to it. e handle that
the application sees is of type MPI_
Comm — but what should its real
type be: a pointer to the structure/
object, or an integer index into an
array of all currently-allocated com-
municators?

Surprisingly, this issue incurs
deep religious rifts between MPI
implementers.

Using integers for handles
means that there is no loss of per-
formance between the C and For-
tran bindings — both sets use indi-
rect addressing to find the back-end
structure (note that MPI specifi-
cally defines Fortran handles to be
integers because Fortran — at least
Fortran — has no concept of
a pointer). Note, however, that in
multi-threaded environments, it is
necessary to obtain a lock before ex-

The Penalty of Fortran

Most MPI implementations are written in C and/or C++. In addition to
C and C++ bindings, the MPI standard specifies language bindings in

two flavors of Fortran: one that will work with Fortran 77 (and later) com-
pilers and one that will work with Fortran 90 (and later) compilers.

For MPI implementations that provide them, the Fortran bindings are
typically “wrapper” functions, meaning that they are actually written in C
(or C++) and simply translate the Fortran arguments to C/C++ conventions
before invoking a back-end implementation function. In many cases, the
back-end function is the corresponding C function. For example, the For-
tran binding for MPI_SEND performs argument translation and then in-
vokes the C binding for MPI_SEND .

The argument translation may also involve some lookups — for exam-
ple, converting Fortran integer handles into back-end structures or objects.
In a threaded environment, this likely involves some form of locking.

Not all implementations work this way, but many do. It is worth investi-
gating your MPI implementation’s behavior if you are trying to squeeze ev-
ery picosecond of performance out of your parallel environment.

4 CLUSTERWORLD volume 3 no 4 5volume 3 no 4 CLUSTERWORLD

amining the array because another
thread may have grown (and there-
fore moved) the array.

Conversely, using pointers
means that the Fortran bindings
may have to perform translation
from the integer to a pointer (prob-
ably through indirect addressing),
but the C bindings can access the
back-end data directly and have no
need for additional lookup or lock-
ing of index arrays. Finally, on plat-
forms where the size of a Fortran
INTEGER is the same size as a point-
er, this is a non-issue — each can be
used interchangeably (e.g., the For-
tran integer handle can actually be
the C pointer value). is case is not
true for all platforms, however.

e size of MPI handles is vis-
ible in mpi.h , and is therefore a key
aspect of the MPI implementation’s
interface to user applications.

What’s in an MPI_Status?
e MPI_Status object, as defined
by the MPI standard, is different
than all other MPI objects: not only
does it have public data members,
the user is responsible for allocating
and freeing MPI_Status objects.
is requirement means that its
structure must be defined in mpi.h
— including any internal data
members (so that pointer math in
the application can be accurate).

Although the standard disallows

MPI applications from using the in-
ternal data members, the fact that
MPI_Status is accessed by value
(and not through a handle) means
that its size is a key aspect of the
MPI implementation’s interface to
user applications.

User Threads
A fundamental decision that an MPI
needs to make during the beginning
of its development is whether to al-
low multiple user threads, and if
so, whether to support concurrency
within the MPI library. It is funda-
mentally easier for an MPI imple-
mentation to assume that there will
only be one user thread in the li-
brary at a given time, either by only
allowing single-threaded MPI appli-
cations or using a single, global mu-
tex to protect all entry points to the
library — effectively only allowing
one thread into the library at a time.

When multiple, concurrent user
threads are allowed, some form of
locking must be used in the MPI li-
brary to protect internal data struc-
tures yet (assumedly) still allow
fine-grained concurrency. For ex-
ample, it is desirable to allow mul-
tiple threads executing MPI_SEND
to progress more-or-less indepen-
dently. Note that this may not be
possible if both sends are going to
the same destination (or otherwise
must share the same network chan-

MPI Mechanic

nel) or if the threads are running
on the same CPU. But in general,
the goal of allowing multiple user
threads within the MPI library is to
offer a high degree of concurrency
wherever possible.

Unless this is considered dur-
ing the initial design, it is difficult
(if not impossible) to graft a fine-
grained locking system onto the
MPI implementation’s internal pro-
gression engine(s). is issue is not
really related to MPI, however, it is
a design-for-threads issue.

Progress:
Asynchronous or Polling?
Many MPI implementations only
make progress on pending message
passing operations when an MPI
function is invoked. For example,
even if an application started a non-
blocking send with MPI_ISEND, the
message may not be fully sent until
MPI_TEST and/or MPI_WAIT is in-
voked. is procedure is common
for single-threaded MPI implemen-
tations (although this is a different
issue than allowing multiple simul-
taneous application-level threads in
the MPI library).

Other MPI implementations of-
fer true asynchronous progress,
potentially utilizing specialized
communication hardware or extra,
hidden threads in the library that
can make message passing progress
regardless of what the application’s
threads are doing.

Designing for asynchronous
progress really needs to be included
from the start. Either specific hard-
ware needs to be used or many of
the same issues with multiple appli-
cation threads need to be addressed.
It is therefore difficult (if not impos-
sible) to add true asynchronous sup-
port to a polling-only MPI imple-
mentation.

Binary [In]Compatibility
Several of the issues discussed

Resources
• MPI Forum www.mpi-forum.org

• MPI — The Complete Reference: Volume 1, The MPI Core (2nd ed)
(The MIT Press) by Marc Snir, Steve Otto, Steven Huss-Lederman, David
Walker, and Jack Dongarra. ISBN 0-262-69215-5.

• MPI — The Complete Reference: Volume 2, The MPI Extensions (The MIT
Press) by William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ew-
ing Lusk, Bill Nitzberg, William Saphir, and Marc Snir. ISBN 0-262-57123-4.

• NCSA MPI tutorial webct.ncsa.uiuc.edu:8900/public/MPI

4 CLUSTERWORLD volume 3 no 4 5volume 3 no 4 CLUSTERWORLD

above (the types of MPI handles,
the contents of MPI_Status, and
the values of constants) can be sim-
plified into a single phrase: have a
common mpi.h and mpif.h . If all
implementations used the same
mpi.h and mpif.h , this would go
a long way towards binary compat-
ibility on a single platform.

However, as was recently
pointed out to me, that’s not re-
ally enough. Even though different
libmpi.so instances could be used
at run-time with a single execut-
able, it is desirable to have a com-
mon mpirun as well (and other
related MPI command line tools).
is requirement means common-
ality between implementations of
MPI_INIT — how to receive the list
of processes in MPI_COMM_WORLD,
their location, how to wait for or
forcibly terminate a set of MPI pro-
cesses, etc. It also has implications
in the implementation of the MPI-

dynamic process functions (MPI_
COMM_SPAWN and friends). is sit-
uation translates to a unified run-
time environment between MPI
implementations.

Given the wide variety of run-
time environments used by MPI im-
plementations, this does not seem
likely in the near future. Never say
“never,” of course, but the run-time
environment comprises a good per-
centage of code in an MPI imple-
mentation — it is the back-end
soul of the machine. More specifi-
cally: given that the MPI interface
is standardized, there is at least a
hope of someday specifying a com-
mon mpi.h and mpif.h . But the
run-time environment in an MPI
implementation is not specified in
the MPI standard at all - there is
little to no similarity between each
implementation’s run-time system.
As such, merging them into a single,
common system seems unlikely.

Where to Go From Here?
Yes, Virginia, MPI implementa-
tions are extremely complicated.
Although binary compatibility is
unlikely, source code compatibility
has been and always will be avail-
able. This feature is part of the
strength of MPI. The other is an
unrelenting desire of developers
to optimize the heck out of their
MPI implementation. Take com-
fort that your code will not only
run everywhere, it will likely run
well everywhere.

Got any MPI questions you
want answered? Wondering why
one MPI does this and another does
that? Send them to jsquyres@open-
mpi.org.

 Jeff Squyres is a post-doctoral research
associate at Indiana University and is the
one of the lead technical architects of the
Open MPI project. You can reach Jeff at
jsquyres@open-mpi.org

MPI Mechanic

