MPI Mechanic

JEFF SQUYRES

Doing More with Less

Have you ever searched for “MPI”
on EBay? It’s fantastic! You can buy
cars, pens, deuterium lamps, PVC
piping, power transformers — all
with MPI! I offer this as proof posi-
tive to the message passing naysay-
ers: with MPI integrated into all of
these common, real-world products,
MPI is here to stay!

Pardon me; I have to go place
some bids...

The Story So Far

Last month, we talked about some

of the issues involved with a single-
threaded MPI implementation making
“progress” on message passing. Specifi-
cally, the discussion centered around
TCP sockets-based implementations.
Unavoidable sources of overhead were
discussed, such as MPI envelopes and
operating system TCP handling.

This month, we’ll discuss oper-
ating system-bypass types of net-
works such as Myrinet, Infiniband,
and Quadrics. Although we won'’t
cover many specifics of these three
networks, the message passing is-
sues are fairly similar across all
three — and quite different than
TCP-based networks.

What Are OS-bypass
Networks?

One source of the overhead involved
in sending and receiving data from a
network is the time necessary to trap
into the operating system kernel. In
some cases, this trap can occur mul-
tiple times, further increasing over-
head. OS-bypass networks attempt
to minimize or eliminate the costly
trap into the kernel — bypassing the
operating system and using commu-
nication co-processors located on the
network card to handle the work in-
stead of the main CPU.

Ignoring lots of details, this typi-
cally involves either modifications to
the kernel or (more recently) loading
amodule into the kernel to provide
both underlying support for user-
level message passing and a device
driver to talk to the network card.

In the user’s application (typical-

ly within the MPI library), message
sending occurs by placing informa-
tion about the outgoing message in

a control structure and then notify-
ing the communication co-processor
to start the send. Incoming messages
are automatically received by the co-
processor and a control structure is
placed in the user application’s mem-
ory, where it can be found when the
application polls for progress.

Differences from TCP

The design of OS-bypass networks
make their usage quite different
than TCP-based networks. Here are
some of the differences:

1 Messages are transferred as single
units; there are no partial sends
and receives.

2 Message and the ordering be-
tween them may not be guaran-
teed.

3 All sent messages must have a cor-
responding pre-posted receive (no
message can be unexpected).

a Resources are limited; e.g., “spe-
cial” memory may have to be used
for all message passing.

Let’s look at each of these in detail.
Single-unit Messages

Unlike the other three, this char-
acteristic generally makes message

2 CLUSTERWORLD volume 3 no 6

passing easier than TCP. One of the
most annoying aspects of writing
a TCP-based progression engine is
the fact that it has to maintain state
about who “owns” the socket, how
far along a read or write is in a given
buffer, etc. Each pass through the
progression engine has to survey all
these values, progress them, and then
update the internal accounting infor-
mation. It’s not rocket science, but it
is quite cumbersome and annoying.
Newer generation networks
present interfaces that transfer
messages as atomic units. If you
send N bytes, the receiver will re-
ceive N bytes - no more, no less.
That’s a whole lot of logic that does
not need to be included in the MPI
transfer layer (as compared to its
TCP analogue).

Message [non-]Guarantees
TCP guarantees that any bytes sent
will be received - there is never any
need for retransmission. Other net-
works do not necessarily provide this
guarantee. Packets can be dropped
or otherwise corrupted (solar and at-
mospheric activity, believe it or not,
can actually be a factor at high alti-
tudes!); the MPI layer is typically the
entity that has to watch for — and
correct — these kinds of problems.
This requirement translates into

at least some additional amount of
code and error conditions that the
MPI layer has to handle.

Dropped packets have to be han-
dled by the MPI implementation.
Some networks’ default handling
of lost packets is to drop all packets
to a given peer. The MPI layer must
then effectively replay all the mes-
sages that it sent to that peer — po-
tentially in the same order that they
were originally sent (depending on

MPI Mechanic

how the MPI implementation’s wire
protocols work) — to recover.

Data corruption monitoring,
although it seems like a desirable
trait, is not something that most
users will tolerate in an MPI imple-
mentation. Because [potentially
expensive] data integrity checking
needs to be inserted in the criti-
cal code path of message passing,
this step, by definition, increases
message passing latency. Combined
with the fact that data corruption is
rare, few MPI implementations sup-
port data integrity and simply as-
sume that the underlying network
will always deliver correct data.

No Unexpected Messages
Most low latency networks derive at
least some of their speed from the
fact that they can assume that all
messages are expected — that there
is a corresponding user-provided
buffer ready to receive each incom-
ing message (unexpected messages
are errors, and can lead to dropped
packets). The MPI implementation
therefore needs to pre-post receive
buffers (for envelopes at least), po-
tentially from each of its peers.

Limited Resources

Some networks can only use “spe-
cial” memory for all message pass-
ing. Myrinet, Infinband, and older
versions of Quadrics need to use
memory that has been registered
with the network driver. One of the
key actions that registering memo-
ry accomplishes is that the operat-
ing system “pins” down the virtual
page(s) where the memory is located
and guarantees that it(they) will
never be swapped out or moved else-
where in physical memory. This re-
striction allows the communication
co-processor on the network card to
DMA transfer to and from the user’s
buffer without fear of the operating
system moving it during the process.
Operating systems have limits on

MPI community wiki!

Anew MPI community resource has recently opened its doors: a wiki all
about MPI — I<www.mpi-comm-world.org>. The intent is to provide
an MPI support site for the community, by the community. Any informa-
tion about MPI is fair game - information about the standard, questions
(and answers) about specific MPl implementations, etc. You are hereby cor-
dially invited to submit information that you wish you had known when

you started with MPI.

There is a password on the site to prevent spam defacements: “MPI_
COMM_WORLD” (without the quotes). Enjoy!

how much memory can be pinned;
typically anywhere from % to % of
physical memory. The MPI imple-
mentation is usually responsible for
managing registered memory.

However, since all receives must
be pre-posted, the MPI layer must
setup to receive some number of
envelopes (possibly on a per-peer
basis). Two obvious questions that
come from this:

How many envelopes should be
pre-posted?

How large should the envelopes be?

Pre-posting the buffers consumes
system resources (e.g., registered
memory), but posting too few buf-
fers for envelopes can degrade per-
formance. If too few are posted,
flow control issues can consume too
much processing power and cause
“dead air” time on the network; if
too many are posted, the system
can run out of registered memory.
The size of the envelopes is an-
other factor. MPI implementations
commonly have three message siz-
es: tiny, small, and large. Tiny mes-
sages are included in the payload of
the envelope itself, and can there-
fore be sent eagerly in a single net-
work transfer. Small messages are
also sent eagerly, but in a second
network transfer (i.e., immediately
after the envelope). Large messages
are sent via rendezvous protocols.

Hence, the size of the enve-
lope is really the maximum size of
the envelope. Specifically, the MPI
implementation will transfer only
as much of the envelope as is neces-
sary. For tiny messages, normally
the header and the payload are sent;
for short and long messages, only
the header is sent. Choosing the
maximum sizes for tiny and short
messages is therefore a complicated
choice (and will not be covered in
this month’s column).

Increasing the maximum size of
envelopes can increase performance
for applications that send relatively
small messages. That is, if the user
application’s common message size
is N, setting the maximum envelope
size to be greater than or equal to N
means that the application’s messages
will be sent eagerly with a single mes-
sage transfer (subject to flow control,
of course). But this also consumes
system resources and can potentially
exhaust available registered memory.

Short and Long Messages
Keep in mind that pre-posted enve-
lopes are only one place where reg-
istered memory is consumed. Any
messages that are not transferred as
part of the envelope (i.e., short and
long messages) need to operate in
registered memory as well.

There are a variety of differ-
ent flow control schemes to handle
such issues. Here’s one simplistic
example:

volume 3| 06 CLUSTERWORLD 3

MPI Mechanic

Sender: sends envelope to the re-
ceiver indicating “I've got a mes-
sage of X bytes to send to you.”

Receiver: upon finding a matching
MPI receive, registers the receive
buffer (if it wasn’t already registered)
and sends back an ACK indicating
“Ready to receive; send to address Y.”

Sender: sends the message to ad-
dress Y.

Sender: upon completion of the
send, replies to the ACK with an
envelope indicating “Transfer
complete.”

Receiver: de-registers the receive
buffer (if necessary).

Registering and de-registering mem-
ory is typically an expensive opera-
tion. MPI implementations typically
expend a good deal of effort opti-
mizing caching and fast lookup sys-
tems in an attempt to minimize time
spent managing registered memory.

Progress
The good news is that once a mes-
sage is given to the communication
co-processor, it will progress “in the
background” without intervention
from the user application (and there-
fore from the MPI implementation).
Since all messages are expected, it
will eventually show up in a buffer
and the network interface will in-
form the MPI layer (typically when
the MPI implementation polls asking
for progress). The MPI implementa-
tion will then process the buffer, de-
pending on its type and content.
This aspect helps with asyn-
chronous progress of tiny and short
messages. The sender fires and for-
gets; the receiver will find the mes-
sage has already arrived once a
matching receive is posted. But this
behavior does not necessarily help
in rendezvous protocols — only

MPI Quiz
Last month, | asked in what order messages would be received at MPT
COMM_WORLD rank 0 from the following code:

1 if (rank == 0)

2 for (i = 0; i < size - 1; ++i)

3 MPI_Recv(buffer[i], ..., MPI_ANY_ SOURCE,
tag, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

4 else

5 MPI_Send(buffer, ..., 0, tag, MPI_COMM_WORLD);
Do MPI’'s message ordering guarantees provide any insight into the receipt
order?

No. The answer is that since all the messages are coming from different
processes, no fine-grained ordering between them is preserved by MPI (as-
suming that all messages were sent at roughly the “same” time) -- the use
of MPI_ANY_ SOURCE was somewhat of a red herring.

It is a not-uncommon problem to assume that this kind of code pat-
tern (especially when using MPI__ANY SOURCE) will receive messages “in
order,” meaning that buffer [i] will correspond to the message sent by
MPI_COMM_WORLD rank i.While the above code is not a bad technique
to avoid bottleneck delays from slow processes, it does not guarantee the
source for any given buffer [i] . If guaranteeing the source is necessary,
the following may be more appropriate:

1 if (rank == 0) {
2 for (i = 0; i < size - 1; ++i) Should be. i+1
3 MPI_Irecv(buffer[i], ..., MRI=dAd=SQURGE,

tag, MPI_COMM_WORLD, &reqs[il);
4 MPI Waitall(size - 1, reqs, MPI_STATUSES_IGNORE)
5 } else
6 MPI_ Send(buffer, ..., 0, tag, MPI_COMM WORLD);
Next question...
Will the following code deadlock? Why or why not? What will the
communication pattern be? How efficient is it?

1 left = (rank == 0) ? MPI_PROC_NULL :
2 right = (rank == size - 1) ? MPI_PROC_NULL :
3 MPI_Recv(rbuf,
4 MPI_Send(sbuf,

rank - 1;

rank + 1;
.., left, tag, comm, &status);

.., right, tag, comm, <Sesdeasties);

single network messages are pro-
gressed independent of the main
CPU. So the flow control messages
described in the simplistic rendez-
vous protocol (above) are only trig-
gered when the MPI implementa-
tion’s progress engine is run. In a
single threaded MPI implementa-
tion, this usually only occurs when

q CLUSTERWORLD volume 3 no 6

the application enters an MPI li-
brary function.
Simply put: single-threaded

MPI implementations receive a nice

benefit from eagerly-sent messages

when communication co-processors

are used. They do not necessarily re-

ceive the same benefit when rendez-
See MPI, page 50

Should be: i+1

MPI Mechanic

MPI, from page 34

vous protocols are used (especially
in conjunction with non-blocking
MPI communication) because the
MPI progress engine still has to poll
to effect progress.

Where to Go From Here?
The same disclaimer from last
month applies: the careful reader
will notice that there were a lot of
assumptions in the explanations
given in this column. For each as-
sumption listed above, there are
real-world MPI implementations
with different assumptions.

The issues described in this col-
umn are one set of reasons why MPI
implementations are so complex.
Management of resources can some-
times be directly at odds with per-
formance; the settings and man-
agement algorithms to maximize
performance for one application
may cause horrendous performance

Resources

MPI Forum (including the MPI-1 and MPI-2 specification documents):

www.mpi-forum.org

MPI — The Complete Reference: Volume 1, The MPI Core (2nd ed)
(The MIT Press) by Marc Snir, Steve Otto, Steven Huss-Lederman, David
Walker, and Jack Dongarra. ISBN 0-262-69215-5.

MPI — The Complete Reference: Volume 2, The MPI Extensions (The
MIT Press) by William Gropp, Steven Huss-Lederman, Andrew Lumsdaine,
Ewing Lusk, Bill Nitzberg, William Saphir, and Marc Snir. ISBN 0-262-57123-4.

NCSA MPI tutorial: webct.ncsa.uiuc.edu:8900/public/MPI

MPI Community Wiki: www.mpi-comm-world.org

in another. As an MPI implementer,
I beg you to remember this the next
time you curse your MPI implemen-
tation for being slow.

Got any MPI questions you
want answered? Wondering why
one MPI does this and another does

volume 3

that? Send them to jsquyres@open-
mpi.org.

Jeff Squyres is a post-doctoral research
associate at Indiana University and is

the one of the lead technical architects
of the Open MPI project. Email Jeff at
jsquyres@open-mpi.org

no6 CLUSTERWORLD 5

